Encrypted | Login

The process of time-activity curve (TAC) determination/calculation for radiopharmaceutical therapy (RPT) is generally heavily dependent on user- and site-dependent steps (e.g., the number and time schedule of measurement points to be used, selection of the fit function), each having a profound effect on the final values of the time-integrated activity (TIA) and thus on the calculated absorbed doses. Despite the high clinical importance of the TIA values, there is no consensus on how to process time-activity data or even a clear understanding of the influence of uncertainties and variations in personalized RPT dosimetry related to user-dependent TAC calculation. To address this critical unmet need, the TACTIC Challenge provided an opportunity to explore the variations in the way TACs are modeled for RPT applications. More than 120 groups from 30+ countries signed up for this data-driven challenge. In total, 95 individual groups submitted their results throughout the challenge.

Launched in January 2023, the TACTIC challenge consisted of three phases: warm-up, individual patient-based TAC, and feasibility of TAC fitting improvement using population-based data. By sharing already processed synthetic biokinetic data of 177Lu-PSMA (kidney, blood and tumor), participants were asked to model the TAC and calculate the time-integrated activity (TIA) values for each target organ to the best of their capability. Additionally, information about the type of the TAC curve and fit optimization parameters were submitted by each participant. The best-performing team was defined as the one with the lowest total RMSE error in the phase.

The final results of the challenge will be presented at the AAPM 2023 Annual Meeting & Exhibition in Houston and reported on in the upcoming publication of the study.

Table 1. Leaderboard of the 1st competition phase: fitting using individual biokinetic data
*optional

# Team/participant (university*) Total RMSE Organ RMSE
kidney tumor blood
1 Centro di Riferimento Oncologico di Aviano (CRO) IRCCS 0.162 0.042 0.010 0.110
2 Team Lee (University of Western Ontario) 0.184 0.065 0.007 0.112
3 William Erwin (MD Anderson) 0.192 0.076 0.009 0.107
4 CCNM (Cleveland Clinic) 0.193 0.046 0.017 0.130
5 Wencke (University Medical Center Hamburg-Eppendorf) 0.194 0.080 0.007 0.107
6 Berlteam (Charité – Universitätsmedizin Berlin) 0.197 0.097 0.011 0.089
7 Dosicro (Invicro) 0.198 0.093 0.013 0.092
8 MUSC Radiology (University of South Carolina) 0.200 0.038 0.008 0.154
9 RTX (Ratio Therapeutics) 0.202 0.089 0.011 0.102
10 UKA (University Hospital Augsburg) 0.204 0.047 0.010 0.147
11 Apple Fritter (Washington University in St. Louis) 0.219 0.054 0.011 0.154
12 POLI (Fondazione Poliambulanza) 0.223 0.063 0.011 0.148
13 Kesner Lab (Memorial Sloan Kettering Cancer Center) 0.223 0.067 0.009 0.147
14 University of Leipzig Medical Centre 0.223 0.055 0.015 0.153
15 Azienda Ospedaliero-Universitaria Pisana 0.230 0.100 0.006 0.125
16 Powerplayjamusa (Loyola University Medical Center) 0.251 0.089 0.028 0.134
17 LEDI (L'Institut de Radioprotection et de Sûreté Nucléaire) 0.263 0.108 0.009 0.147
18 CHUM (Université de Montréal) 0.302 0.188 0.011 0.102
19 European Radiation Dosimetry Group 0.320 0.046 0.009 0.265
20 Vappu (Helsinki University Hospital) 0.336 0.055 0.013 0.267
21 OHSU Physics (Oregon Health & Science University) 0.357 0.074 0.010 0.272
22 Blazers (University of Alabama at Birmingham) 0.362 0.256 0.009 0.097
23 SoltaniBioLab (UC Davis) 0.399 0.085 0.028 0.286
24 TORVE (Homepage Università degli Studi di Roma Tor Vergata) 0.402 0.127 0.027 0.248
25 Fittin this donut (Texas Children’s Hospital) 0.452 0.151 0.165 0.136
26 NukeDudes (University of Alberta) 0.480 0.052 0.006 0.421
27 QICPM (Princess Margaret Cancer Centre) 0.513 0.120 0.006 0.386
28 NUK I (Tirol Kliniken) 0.559 0.065 0.009 0.484
29 Lberens (University of Chicago) 0.660 0.051 0.019 0.590
30 Panda ( Pontifícia Universidade Católica do Rio Grande do Sul) 0.670 0.172 0.014 0.485
31 JNDT (Karolinska University) 1.199 0.097 0.008 1.095
32 Rhode Island Hospital, Brown University 1.533 1.066 0.324 0.143
33 UMN (University of Minnesota) 1.687 0.100 0.021 1.566

Table 2. Leaderboard of the 2nd competition phase: fit model incorporating population-based biokinetic data
*optional

# Team/participant (university*) Total RMSE Organ RMSE
kidney tumor blood
1 CCNM (Cleveland Clinic) 0.117 0.040 0.020 0.058
2 University of Leipzig Medical Centre 0.148 0.066 0.015 0.067
3 European Radiation Dosimetry Group 0.160 0.028 0.011 0.121
4 Centro di Riferimento Oncologico di Aviano (CRO) IRCCS 0.165 0.042 0.008 0.115
5 MUSC Radiology (University of South Carolina) 0.176 0.038 0.008 0.131
6 Vappu (Helsinki University Hospital) 0.177 0.074 0.007 0.096
7 William Erwin (MD Anderson) 0.192 0.076 0.009 0.107
8 Wencke (University Medical Center Hamburg-Eppendorf) 0.194 0.080 0.007 0.107
9 UKA (University Hospital Augsburg) 0.204 0.047 0.010 0.147
10 Alepi 0.206 0.047 0.006 0.152
11 RTX (Ratio Therapeutics) 0.213 0.086 0.012 0.116
12 Kesner Lab (Memorial Sloan Kettering Cancer Center) 0.223 0.067 0.009 0.147
13 Team Lee (University of Western Ontario) 0.228 0.075 0.006 0.146
14 POLI (Fondazione Poliambulanza) 0.229 0.075 0.006 0.148
15 QIPCM (Princess Margaret Cancer Centre) 0.231 0.066 0.013 0.153
16 Paganetti Lab (MGH, Harvard University) 0.241 0.051 0.005 0.185
17 AppleFritter (Washington University in St. Louis) 0.246 0.055 0.011 0.180
18 Blazers (University of Alabama at Birmingham) 0.475 0.475    
19 NukeDudes (University of Alberta) 0.480 0.052 0.006 0.421
20 LEDI (L'Institut de Radioprotection et de Sûreté Nucléaire) 0.534 0.378 0.011 0.145
21 Lberens (University of Chicago) 0.860 0.066 0.016 0.778
22 UMN (University of Minnesota) 0.870 0.240 0.020 0.609
23 SoltaniBioLab (UC Davis) 0.927 0.547 0.061 0.319
24 Oregon Health & Science University 0.957 0.057 0.017 0.883
25 Powerplayjamusa (Loyola University Medical Center) 0.999 0.549 0.101 0.349
26 Rhode Island Hospital, Brown University 1.104 0.517 0.070 0.517
27 Sajid Bashir 2.208 0.626 0.446 1.136
28 Panda (Pontifícia Universidade Católica do Rio Grande do Sul) 4.069 0.304 3.107 0.658