Program Information
Impact of Shoulder Deformation for Head and Neck VMAT
Y Uchida*, H Tachibana , National Cancer Center, Kashiwa, Chiba
Presentations
SU-F-T-396 (Sunday, July 31, 2016) 3:00 PM - 6:00 PM Room: Exhibit Hall
Purpose: For head and neck VMAT (HN-VMAT), variations of position and deformation of patient’s shoulders is a concern to affect inaccuracy of dose distribution. It has been reported that the setup error of the shoulders was variable from 5 mm – 1 cm. The beams of the HN-VMAT pass through the shoulders. We assessed the impact of shoulder deformation to dose distribution for HN-VMAT.
Methods: One HN-VMAT plan was generated using a patient’s CT. The patient’s CT was deformed using ImSimQA (Oncology Systems Limited, Shrewsbury, Shropshire, UK) to generate several patterns of the shoulders’ deformations when the right and left humeral heads were shifted with 3, 6, and 15 mm in the superior and inferior directions (SI), 3, 5, and 15 mm in the anterior and posterior directions (AP), and 5 and 15 mm in the right or left direction (LR). DVH comparison was performed in the different deformation patterns. The dosimetric parameters of D95% for CTV70Gy, CTV60Gy and CTV54Gy and dmax for Spinal cord were also measured. Gamma index evaluation (Criteria: 3%/2mm) was performed to exhibit clinically tolerable area in the comparison.
Results: DVH comparison shows similar for all structures. As the comparison for the dosimetric parameters, the variations of D95% in the LR and AP were within 1%. There were larger variations in the SI than those in the other directions, however were within 1.5%. In gamma index evaluation, the small spots with higher gamma index values were appeared when the shift was 6 mm, however the pass ratio was 99.13%.
Conclusion: HN-VMAT should be robust for shoulder deformation and geometric accuracy within 6 mm from patient’s setup and image-guided radiotherapy may be clinically acceptable for target dose coverage or normal tissue dose sparing.
Contact Email: