Encrypted login | home

Program Information

Post-Implant Dosimetry in Prostate Brachytherapy by X-Ray and MRI Fusion

no image available
S Park

S Park1*, Y Le2, D Song1, J Lee1, (1) Johns Hopkins University, Baltimore, MD, (2) Indiana University, Indianapolis, IN

Presentations

WE-AB-BRA-12 (Wednesday, August 3, 2016) 7:30 AM - 9:30 AM Room: Ballroom A


Purpose: For post-implant dosimetric assessment after prostate brachytherapy, CT-MR fusion approach has been advocated due to the superior accuracy on both seeds localization and soft tissue delineation. However, CT deposits additional radiation to the patient, and seed identification in CT requires manual review and correction. In this study, we propose an accurate, low-dose, and cost-effective post-implant dosimetry approach based on X-ray and MRI.

Methods: Implanted seeds are reconstructed using only three X-ray fluoroscopy images by solving a combinatorial optimization problem. The reconstructed seeds are then registered to MR images using an intensity-based points-to-volume registration. MR images are first pre-processed by geometric and Gaussian filtering, yielding smooth candidate seed-only images. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine followed by local deformable registrations. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints.

Results: We tested our algorithm on twenty patient data sets. For quantitative evaluation, we obtained ground truth seed positions by fusing the post-implant CT-MR images. Seeds were semi-automatically extracted from CT and manually corrected and then registered to the MR images. Target registration error (TRE) was computed by measuring the Euclidean distances from the ground truth to the closest registered X-ray seeds. The overall TREs (mean±standard deviation in mm) are 1.6±1.1 (affine) and 1.3±0.8 (affine+deformable). The overall computation takes less than 1 minute.

Conclusion: It has been reported that the CT-based seed localization error is ~1.6mm and the seed localization uncertainty of 2mm results in less than 5% deviation of prostate D90. The average error of 1.3mm with our system outperforms the CT-based approach and is considered well within the clinically acceptable limit.

Funding Support, Disclosures, and Conflict of Interest: Supported in part by NIH/NCI grant 5R01CA151395. The X-ray-based implant reconstruction method (US patent No. 8,233,686) was licensed to Acoustic MedSystems Inc.


Contact Email: