Program Information
Radiation Dose Simulation for a Newly Proposed Dynamic Bowtie Filters for CT Using Fast Monte Carlo Methods
T Liu*, H Lin , Y Gao , P Caracappa , G Wang , W Cong , X Xu , Rensselaer Polytechnic Institute, Troy, NY
Presentations
TH-AB-207A-7 (Thursday, August 4, 2016) 7:30 AM - 9:30 AM Room: 207A
Purpose: Dynamic bowtie filter is an innovative design capable of modulating the X-ray and balancing the flux in the detectors, and it introduces a new way of patient-specific CT scan optimizations. This study demonstrates the feasibility of performing fast Monte Carlo dose calculation for a type of dynamic bowtie filter for cone-beam CT (Liu et al. 2014 9(7) PloS one) using MIC coprocessors.
Methods: The dynamic bowtie filter in question consists of a highly attenuating bowtie component (HB) and a weakly attenuating bowtie (WB). The HB is filled with CeCl3 solution and its surface is defined by a transcendental equation. The WB is an elliptical cylinder filled with air and immersed in the HB. As the scanner rotates, the orientation of WB remains the same with the static patient. In our Monte Carlo simulation, the HB was approximated by 576 boxes. The phantom was a voxelized elliptical cylinder composed of PMMA and surrounded by air (44cmx44cmx40cm, 1000x1000x1 voxels). The dose to the PMMA phantom was tallied with 0.15% statistical uncertainty under 100 kVp source. Two Monte Carlo codes ARCHER and MCNP-6.1 were compared. Both used double-precision. Compiler flags that may trade accuracy for speed were avoided.
Results: The wall time of the simulation was 25.4 seconds by ARCHER on a 5110P MIC, 40 seconds on a X5650 CPU, and 523 seconds by the multithreaded MCNP on the same CPU. The high performance of ARCHER is attributed to the parameterized geometry and vectorization of the program hotspots.
Conclusion: The dynamic bowtie filter modeled in this study is able to effectively reduce the dynamic range of the detected signals for the photon-counting detectors. With appropriate software optimization methods, the accelerator-based (MIC and GPU) Monte Carlo dose engines have shown good performance and can contribute to patient-specific CT scan optimizations.
Contact Email: