Program Information
Cone Beam Computed Tomography (CBCT) Inter-Scan and Inter-Observer Tumor Volume Variability Assessment in Patients Treated with Stereotactic Body Radiation Therapy (SBRT) for Early Stage Non-Small Cell Lung Cancer (NSCLC)
Y Hou*, C Aileen , D Kozono , J Killoran , M Wagar , S Lee , F Hacker , H Aerts , J Lewis , R Mak , Brigham and Women's Hospital, Boston, MA
Presentations
SU-E-J-266 (Sunday, July 12, 2015) 3:00 PM - 6:00 PM Room: Exhibit Hall
Purpose: Quantification of volume changes on CBCT during SBRT for NSCLC may provide a useful radiological marker for radiation response and adaptive treatment planning, but the reproducibility of CBCT volume delineation is a concern. This study is to quantify inter-scan/inter-observer variability in tumor volume delineation on CBCT.
Methods:Twenty early-stage (stage I and II) NSCLC patients were included in this analysis. All patients were treated with SBRT with a median dose of 54 Gy in 3 to 5 fractions. Two physicians independently manually contoured the primary gross tumor volume on CBCTs taken immediately before SBRT treatment (Pre) and after the same SBRT treatment (Post). Absolute volume differences (AVD) were calculated between the Pre and Post CBCTs for a given treatment to quantify inter-scan variability, and then between the two observers for a given CBCT to quantify inter-observer variability. AVD was also normalized with respect to average volume to obtain relative volume differences (RVD). Bland-Altman approach was used to evaluate variability. All statistics were calculated with SAS version 9.4.
Results:The 95% limit of agreement (mean ± 2SD) on AVD and RVD measurements between Pre and Post scans were -0.32cc to 0.32cc and -0.5% to 0.5% versus -1.9 cc to 1.8 cc and -15.9% to 15.3% for the two observers respectively. The 95% limit of agreement of AVD and RVD between the two observers were -3.3 cc to 2.3 cc and -42.4% to 28.2% respectively. The greatest variability in inter-scan RVD was observed with very small tumors (< 5 cc).
Conclusion:Inter-scan variability in RVD is greatest with small tumors. Inter-observer variability was larger than inter-scan variability. The 95% limit of agreement for inter-observer and inter-scan variability (~15-30%) helps define a threshold for clinically meaningful change in tumor volume to assess SBRT response, with larger thresholds needed for very small tumors.
Funding Support, Disclosures, and Conflict of Interest: Part of the work was funded by a Kaye award Disclosure/Conflict of interest: Raymond H. Mak: Stock ownership: Celgene, Inc. Consulting: Boehringer-Ingelheim, Inc.
Contact Email: