Encrypted login | home

Program Information

Comparison of Unintended Radiation Doses to Organs at Risk Resulting From the Out-Of-Field Therapeutic Beams and From Image-Guidance X-Ray Procedures


G Ding

G Ding*, L Wang , Vanderbilt University, Nashville, TN

Presentations

SU-E-J-8 (Sunday, July 12, 2015) 3:00 PM - 6:00 PM Room: Exhibit Hall


Purpose:
The unintended radiation dose to organs at risk (OAR) can be contributed from imaging guidance procedures as well as from leakage and scatter of therapeutic beams. This study compares the imaging dose with the unintended out-of-field therapeutic dose to patient sensitive organs.

Methods:
The Monte Carlo EGSnrc user codes, BEAMnrc and DOSXYZnrc, were used to simulate kV X-ray sources from imaging devices as well as the therapeutic IMRT/VMAT beams and to calculate doses to target and OARs on patient treatment planning CT images. The accuracy of the Monte Carlo simulations was benchmarked against measurements in phantoms. The dose-volume histogram was utilized in analyzing the patient organ doses.

Results:
The dose resulting from Standard Head kV-CBCT scans to bone and soft tissues ranges from 0.7 to 1.1 cGy and from 0.03 to 0.3 cGy, respectively. The dose resulting from Thorax scans on the chest to bone and soft tissues ranges from 1.1 to 1.8 cGy and from 0.3 to 0.6 cGy, respectively. The dose resulting from Pelvis scans on the abdomen to bone and soft tissues range from 3.2 to 4.2 cGy and from 1.2 to 2.2 cGy, respectively. The out-of-field doses to OAR are sensitive to the distance between the treated target and the OAR. For a typical Head-and-Neck IMRT/VMAT treatment the out-of-field doses to eyes are 1-3% of the target dose, or 2-6 cGy per fraction.

Conclusion:
The imaging doses to OAR are predictable based on the imaging protocols used when OARs are within the imaged volume and can be estimated and accounted for by using tabulated values. The unintended out-of-field doses are proportional to the target dose, strongly depend on the distance between the treated target and OAR, and are generally higher comparing to the imaging dose.

Funding Support, Disclosures, and Conflict of Interest: This work was partially supported by Varian research grant VUMC40590.


Contact Email: