Encrypted login | home

Program Information

Study of Secondary Neutrons From Uniform Scanning Proton Beams


M Islam

M Islam1*, Y Zheng2 , E Benton3 , (1) Lawrence Cancer Center, KS (2) Procure Proton Therapy Center, Oklahoma City, OK, (3) Oklahoma State University, Stillwater, OKLAHOMA

Presentations

SU-E-T-304 Sunday 3:00PM - 6:00PM Room: Exhibit Hall

Purpose:
Secondary neutrons are unwanted byproducts from proton therapy and exposure from secondary radiation during treatment could increase risk of developing a secondary cancer later in a patient’s lifetime. The purpose of this study is to investigate secondary neutrons from uniform scanning proton beams under various beam conditions using both measurements and Monte Carlo simulations.

Methods:
CR-39 Plastic Track Nuclear Detectors (PNTD) were used for the measurement. CR-39 PNTD has tissue like sensitivity to the secondary neutrons but insensitive to the therapeutic protons. In this study, we devised two experimental conditions: a) hollow-phantom; phantom is bored with a hollow cylinder along the direction of the beam so that the primary proton passes through the phantom without interacting with the phantom material, b) cylindrical-phantom; a solid cylinder of diameter close to the beam diameter is placed along the beam path. CR-39 PNTDs were placed laterally inside a 60X20X35 cm3 phantom (hollow-phantom) and in air (cylindrical-phantom) at various angles with respect to the primary beam axis. We studied for three different proton energies (78 MeV, 162 MeV and 226 MeV), using a 4 cm modulation width and 5cm diameter brass aperture for the entire experiment and simulation. A comparison of the experiment was performed using the Monte Carlo code FLUKA.

Results:

The measured secondary neutron dose equivalent per therapeutic primary proton dose (H/D) ranges from 2.1 ± 0.2 to 25.42 ± 2.3 mSv/Gy for the hollow phantom study, and 2.7 ± 0.3 to 46.4 ± 3.4 mSv/Gy for the cylindrical phantom study. Monte Carlo simulations predicated neutron dose equivalent from measurements within a factor of 5.
Conclusion:
The study suggests that the production of external neutrons is significantly higher than the production of internal neutrons.


Contact Email: