Encrypted login | home

Program Information

Measurement of the Neutron Ambient Dose Equivalent From the TrueBeam Linac Head and Varian 2100 Clinac

no image available
M Harvey

M Harvey1*, J Pollard2 , Z Wen2 , S Gao2 , (1) Texas Southern University, Houston, TX, (2) MD Anderson Cancer Center, Houston, TX, (2) MD Anderson Cancer Center, Houston, TX, (2) MD Anderson Cancer Ctr., Houston, TX

Presentations

SU-E-T-403 Sunday 3:00PM - 6:00PM Room: Exhibit Hall

Purpose: High-energy x-ray therapy produces an undesirable source of stray neutron dose to healthy tissues, and thus, poses a risk for second cancer induction years after the primary treatment. Hence, the purpose of this study was to measure the neutron ambient dose equivalent, H*(10), produced from the TrueBeam and Varian 2100 linac heads, respectively. Of particular note is that there is no measured data available in the literature on H*(10) production from the TrueBeam treatment head.

Methods: Both linacs were operated in flattening filter mode using a 15 MV x-ray beam on TrueBeam and an 18 MV x-ray beam for the Varian 2100 Clinac with the jaws and multileaf collimators in the fully closed position. A dose delivery rate of 600 MU/min was delivered on the TrueBeam and the Varian 2100 Clinac, respectively and the H*(10) rate was measured in triplicate using the WENDI-2 detector located at multiple positions including isocenter and longitudinal (gun-target) to the isocenter.

Results: For each measurement, the H*(10) rate was relatively constant with increasing distance away from the isocenter with standard deviations on the order of a tenth of a mSv/h or less for the given beam energy. In general, fluctuations in the longitudinal H*(10) rate between the anterior-posterior couch directions were approximately a percent for both beam energies.

Conclusion: Our preliminary results suggest an H*(10) rate of about 30 mSv/h (40 mSv/h) or less for TrueBeam (Varian Clinac 2100) for all measurements considered in this study indicating a relatively low contribution of produced secondary neutrons to the primary therapeutic beam.


Contact Email: