Program Information
Prediction of Dosimetric Endpoints From Patient Geometry Using Neural Nets
D O'Connell*, P Chow, N Agazaryan, S Jani, D Low, J Lamb, Department of Radiation Oncology, University of California, Los Angeles, CA
Presentations
SU-F-BRD-11 Sunday 4:00PM - 6:00PM Room: Ballroom DPurpose:
The previously-published overlap volume histogram (OVH) technique lends itself naturally to prediction of the dose received by a given volume of tissue (e.g. D90) in intensity-modulated radiotherapy (IMRT) treatment plans. Here we extend the OVH technique using artificial neural networks in order to predict the volume of tissue receiving a given dose (e.g. V90) in both prostate IMRT and conventional breast radiotherapy.
Methods:
Twenty-nine prostate treatment plans and forty-three breast treatment plans were analyzed. The spatial relationships between the prostate and rectum and between the breast and ipsilateral lung were characterized using OVHs. The OVH is a cumulative histogram representing the fractional volume of the risk organ overlapped by a series of isotropic expansions of the planning target volume (PTV). Seven cases were identified as outliers and replanned. OVH points were used as inputs to a one hidden layer feed forward artificial neural network with quality parameters of the corresponding plan, such as the rectum V50, as targets. A 3-fold cross-validation was used to estimate the prediction error.
Results:
The root mean square (RMS) error between the predicted rectum V50s and the planned values was 2.3, which was 35% of the standard deviation of V50 for the twenty-nine plans. The RMS error of prediction of V20 of the ipsilateral lung in breast cases was 3.9, which was 90% of the standard deviation of the V20 values in the breast plan database.
Conclusion:
This study demonstrates that artificial neural nets can be used to extend the OVH technique to predict dosimetric endpoints taking the form of a volume receiving a given dose, rather than the minimum dose received by a given volume. Prediction of ipsilateral lung dose in breast radiotherapy using the OVH technique remains a work in progress.
Contact Email: