Encrypted login | home

Program Information

Dose to Organs Outside of CT Scan Range- Monte Carlo and Hybrid Phantom Approach

no image available
C Pelletier

C Pelletier1*, C Lee2 , J Jung1 , J Kim3 , C Lee4 , (1) East Carolina University, Greenville, NC, (2) University of Michigan, Ann Arbor, MI, (3) University of Pittsburgh Medical Center, Pittsburgh, PA, (4) National Cancer Institute, Rockville, MD

Presentations

SU-E-T-117 Sunday 3:00PM - 6:00PM Room: Exhibit Hall

Purpose: Epidemiological study of second cancer risk for cancer survivors often requires the dose to normal tissues located outside the anatomy covered by radiological imaging, which is usually limited to tumor and organs at risk. We have investigated the feasibility of using whole body computational human phantoms for estimating out-of-field organ doses for patients treated by Intensity Modulated Radiation Therapy (IMRT).

Methods: Identical 7-field IMRT prostate plans were performed using X-ray Voxel Monte Carlo (XVMC), a radiotherapy-specific Monte Carlo transport code, on the computed tomography (CT) images of the torso of an adult male patient (175 cm height, 66 kg weight) and an adult male hybrid computational phantom with the equivalent body size. Dose to the liver, right lung, and left lung were calculated and compared.

Results: Considerable differences are seen between the doses calculated by XVMC for the patient CT and the hybrid phantom. One major contributing factor is the treatment method, deep inspiration breath hold (DIBH), used for this patient. This leads to significant differences in the organ position relative to the treatment isocenter. The transverse distances from the treatment isocenter to the inferior border of the liver, left lung, and right lung are 19.5cm, 29.5cm, and 30.0cm, respectively for the patient CT, compared with 24.3cm, 36.6cm, and 39.1cm, respectively, for the hybrid phantom. When corrected for the distance, the mean doses calculated using the hybrid phantom are within 28% of those calculated using the patient CT.

Conclusion: This study showed that mean dose to the organs located in the missing CT coverage can be reconstructed by using whole body computational human phantoms within reasonable dosimetric uncertainty, however appropriate corrections may be necessary if the patient is treated with a technique that will significantly deform the size or location of the organs relative to the hybrid phantom.


Contact Email: