Program Information
Investigation of a 2D Antiscatter Grid for Flat Panel Detectors
C Altunbas1*, Y Zhong2 , C Shaw2 , B Kavanagh1 , M Miften1 , (1) University of Colorado School of Medicine, Aurora, CO (2) UT MD Anderson Cancer Center, Houston, TX
Presentations
SU-D-12A-4 Sunday 2:05PM - 3:00PM Room: 12APurpose:To improve CT number accuracy and contrast sensitivity, a novel 2D antiscatter grid (ASG) for flat panel detector (FPD) based CBCT imaging was evaluated. Experiments were performed to characterize the scatter rejection and contrast sensitivity performance of ASG. The reduction in primary transmission for various ASG geometries was also evaluated by a computational model.
Methods:The 2D ASG design was based on multi-hole collimators used in Nuclear Medicine. It consisted of abutted hexagon shaped apertures with 2.5 mm pitch and 32 mm height, and separated by 0.25 mm thick lead septa. Scatter-to-primary ratio (SPR), contrast-to-noise ratio (CNR), and mean primary transmission were measured using a benchtop FPD/x-ray source system. Acrylic slabs of varying thicknesses were imaged with a contrast-detail phantom to measure CNR and SPR under different scatter conditions. Primary transmission was also measured by averaging pixel values in flood field images without the phantom. We additionally explored variation of primary transmission with pitch and septum thickness using a computational model of our ASG.
Results:Our 2D ASG reduced the SPR from 3.3 to 0.12, and improved CNR by 50% in 20 cm thick slab phantom projections acquired at 120 kVp. While the measured primary transmission was 72.8%, our simulations show that primary transmission can be increased to 86% by reducing the septum thickness to 0.1 mm. Primary transmission further increases to 93% if septum thickness of 0.1 mm is used in conjunction with an increased pitch of 4 mm.
Conclusion:The 2D ASG appears to be a promising scatter rejection device, offering both superior scatter rejection and improved contrast sensitivity. Though its lead footprint reduced primary transmission, our work shows that optimization of aperture pitch and septum thickness can significantly improve the primary transmission.
Contact Email: