Program Information
Analysis of GI Dose Variability Due to Intrafraction Setup Variance
J Phillips*, J Wolfgang , Massachusetts General Hospital, Boston, MA
Presentations
SU-E-T-41 Sunday 3:00PM - 6:00PM Room: Exhibit HallPurpose: Proton SBRT (stereotactic body radiation therapy) can be an effective modality for treatment of gastrointestinal tumors, but limited in practice due to sensitivity with respect to variation in the RPL (radiological path length). Small, intrafractional shifts in patient anatomy can lead to significant changes in the dose distribution. This study describes a tool designed to visualize uncertainties in radiological depth in patient CT’s and aid in treatment plan design.
Methods: This project utilizes the Shadie toolkit, a GPU-based framework that allows for real-time interactive calculations for volume visualization. Current SBRT simulation practice consists of a serial CT acquisition for the assessment of inter- and intra-fractional motion utilizing patient specific immobilization systems. Shadie was used to visualize potential uncertainties, including RPL variance and changes in gastric content. Input for this procedure consisted of two patient CT sets, contours of the desired organ, and a pre-calculated dose. In this study, we performed rigid registrations between sets of 4DCT’s obtained from a patient with varying setup conditions. Custom visualizations are written by the user in Shadie, permitting one to create color-coded displays derived from a calculation along each ray.
Results: Serial CT data acquired on subsequent days was analyzed for variation in RPB and gastric content. Specific shaders were created to visualize clinically relevant features, including RPL (radiological path length) integrated up to organs of interest. Using pre-calculated dose distributions and utilizing segmentation masks as additional input allowed us to further refine the display output from Shadie and create tools suitable for clinical usage.
Conclusion: We have demonstrated a method to visualize potential uncertainty for intrafractional proton radiotherapy. We believe this software could prove a useful tool to guide those looking to design treatment plans least insensitive to motion for patients undergoing proton SBRT in the GI tract.
Contact Email: