Program Information
An Experimental Validation of Gamma Knife Based Convolution Algorithm On Solid Acrylic Anthropomorphic Phantom
N Gopishankar*, R K Bisht , All India Institute of Medical Sciences, New Delhi, India
Presentations
SU-E-T-607 Sunday 3:00PM - 6:00PM Room: Exhibit HallPurpose:
To perform dosimetric evaluation of convolution algorithm in Gamma Knife (Perfexion Model) using solid acrylic anthropomorphic phantom.
Methods:
An in-house developed acrylic phantom with ion chamber insert was used for this purpose. The middle insert was designed to fit ion chamber from top(head) as well as from bottom(neck) of the phantom, henceforth measurement done at two different positions simultaneously. Leksell frame fixed to phantom simulated patient treatment. Prior to dosimetric study, hounsfield units and electron density of acrylic material were incorporated into the calibration curve in the TPS for convolution algorithm calculation. A CT scan of phantom with ion chamber (PTW Freiberg, 0.125cc) was obtained with following scanning parameters: Tube voltage-110kV, Slice thickness-1mm and FOV-240mm. Three separate single shot plans were generated in LGP TPS (Version 10.1.) with collimators 16mm, 8mm and 4mm respectively for both ion chamber positions. Both TMR10 and Convolution algorithm based planning (CABP) were used for dose calculation. A dose of 6Gy at 100% isodose was prescribed at centre of ion chamber visible in the CT scan. The phantom with ion chamber was positioned in the treatment couch for dose delivery.
Results:
The ion chamber measured dose was 5.98Gy for 16mm collimator shot plan with less than 1% deviation for convolution algorithm whereas with TMR10 measured dose was 5.6Gy. For 8mm and 4mm collimator plan merely a dose of 3.86Gy and 2.18Gy respectively were delivered at TPS calculated time for CABP.
Conclusion:
CABP is expected to perform accurate prediction of time for dose delivery for all collimators, but significant variation in measured dose was observed for 8mm and 4mm collimator which may be due collimator size effect. Effect of metal artifacts caused by pins and frame on the CT scan also may have role in misinterpreting CABP. The study carried out requires further investigation.
Contact Email: