Program Information
Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy
D Lewis*, P Summers , D Followill , N Sahoo , A Mahajan , F Stingo , S Kry , UT MD Anderson Cancer Center, Houston, TX
Presentations
SU-E-CAMPUS-T-3 Sunday 3:00PM - 6:00PM Room: Exhibit HallPurpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC).
Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multi-layer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU.
Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%.
Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis criterion for the film planes.
Funding Support, Disclosures, and Conflict of Interest: Work supported by grants CA10953, CA059267, and CA81647 (NCI, DHHS).
Contact Email: