Program Information
A Novel 4D-MRI Technology Based On K-Space Retrospective Sorting
Y Liu*, Medical Physics Program, Durham, NC; F Yin , J Cai , Duke University Medical Center, Durham, NC
Presentations
SU-D-18C-1 Sunday 2:05PM - 3:00PM Room: 18CPurpose:
Current 4D-MRI techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of an entirely new framework of 4D-MRI based on k-space retrospective sorting.
Methods:
An important challenge of the proposed technique is to determine the number of repeated scans(NR) required to obtain sufficient k-space data for 4D-MRI. To do that, simulations using 29 cancer patients’ respiratory profiles were performed to derive the relationship between data acquisition completeness(Cp) and NR, also relationship between NR(Cp=95%) and the following factors: total slice(NS), respiratory phase bin length(Lb), frame rate(fr), resolution(R) and image acquisition starting-phase(P0). To evaluate our technique, a computer simulation study on a 4D digital human phantom (XCAT) were conducted with regular breathing (fr=0.5Hz; R=256x256). A 2D echo planer imaging(EPI) MRI sequence were assumed to acquire raw k-space data, with respiratory signal and acquisition time for each k-space data line recorded simultaneously. K-space data was re-sorted based on respiratory phases. To evaluate 4D-MRI image quality, tumor trajectories were measured and compared with the input signal. Mean relative amplitude difference(D) and cross-correlation coefficient(CC) are calculated. Finally, phase-sharing sliding window technique was applied to investigate the feasibility of generating ultra-fast 4D-MRI.
Result:
Cp increased with NR(Cp=100*[1-exp(-0.19*NR)], when NS=30, Lb=100%/6). NR(Cp=95%) was inversely-proportional to Lb (r=0.97), but independent of other factors. 4D-MRI on XCAT demonstrated highly accurate motion information (D=0.67%, CC=0.996) with much less artifacts than those on image-based sorting 4D-MRI. Ultra-fast 4D-MRI with an apparent temporal resolution of 10 frames/second was reconstructed using the phase-sharing sliding window technique.
Conclusions:
A novel 4D-MRI technology based on k-space sorting has been successfully developed and evaluated on the digital phantom. Framework established can be applied to a variety of MR sequences, showing great promises to develop the optimal 4D-MRI technique for many radiation therapy applications.
Funding Support, Disclosures, and Conflict of Interest: NIH (1R21CA165384-01A1)
Contact Email: