Emerging X-ray Fluoroscopic Guidance Technologies for Challenging Cardiovascular Interventions

Michael A. Speidel
University of Wisconsin - Madison

AAPM 2009 Annual Meeting

Objectives

1. Review the demands and limitations of x-ray fluoroscopy (XRF) in guided cardiac interventions
 - Lack of tissue contrast and depth information
 - X-ray dose concerns

2. Understand the principles of Inverse Geometry XRF
 - Scanning-Beam Digital X-ray (SBDX) prototype system
 - Reduction of patient x-ray dose
 - 3D tracking of catheter devices

3. Discuss x-ray fluoroscopy combined with 3D roadmaps
 - Visualization of 3D soft tissue targets
 - Endocardial stem cell therapy

X-Ray Fluoroscopic (XRF) Guidance

- Basic demands on a guidance system in the cardiac cath lab:
 1. Real time continuous feedback
 2. High spatial, temporal resolution
 3. Device position relative to anatomy
 4. Simple to set up and use
 5. Compatible with catheter devices

- XRF meets these requirements well in many types of interventions

1. X-ray Guidance in Cardiac Interventions

- Coronary Angioplasty
Lack of Tissue Contrast and Depth Focus

Ablation of Atrial Fibrillation
- Device: RF ablation catheter
- Target: Line around pulmonary vein ostia
- Left Atrium
- Pulmonary veins

Endomyocardial Cell Therapy
- Device: Injection catheter
- Target: Viable peri-infarct zone
- Infarct zone
- Left ventricle

- Target anatomy lacks contrast
- Catheter position difficult to determine relative to 3D target
- Requires delineation of soft tissue based on functional status
- Experimental procedure

X-ray Radiation Dose in the Cath Lab

- Deterministic risk of skin injury (> 2 Gy to skin)
- Fluoro time (min): PCI = 121 ± 63, RF Abl = 18 ± 12
- Cine runs (#): PCI = 35 ± 17, RF Abl = 36 ± 17
- Max skin dose (Gy): PCI = 1.45 ± 0.99, RF Abl = 0.64 ± 0.55

- Stochastic risk of cancer induction

Obesity and Radiation Dose in RF ablation of Atrial Fibrillation

BMI	Age	Dose (mGy)	Lifetime Attributable Risk of cancer incidence
< 25 | 48 ± 10 | 15.2 ± 7.9 | 1/1000
25-30 | 51 ± 7 | 26.8 ± 11.8 | 1/633
≥ 30 | 46 ± 10 | 39.0 ± 14.7 | 1/405

Guidance Solutions for the Cath Lab

- Pursue non-fluoroscopic technologies
 - E.g. Electroanatomic mapping systems (EAM)
 - 3D tracking of specialized catheters
 - Point-by-point endocardial surface mapping
 - Cardiac ablation guidance

- Or seek to modify / enhance XRF guidance by:
 1) Reducing x-ray dose while maintaining image quality
 2) Adding 3D context to the live image display

2. Inverse Geometry XRF

Scanning-Beam Digital X-ray (SBDX) Prototype

Operating Principles
- Dose Reduction
- Catheter Tracking
SBDX Operating Principles

- Photon-counting Detector Array
- Real-time Reconstructor
- 15-30 fps
- ~40,000 images in 1/15 sec

Dose Reduction Principles

1. Beam scanning and large airgap reduces detected x-ray scatter
2. Thick CdTe detector maintains high DQE at high source kVp

SBDX Prototype Performance (2006)

- Large-area SNR
- Entrance Exposure

- SBDX operating at equal SNR: 15% - 31% entrance exposure
- Greatest dose reduction for largest phantoms

Dose Reduction Principles

3. Inverse geometry reduces x-ray fluence at the patient entrance

- Conventional
- SBDX

SBDX System Development

Detector Re-design

Phantom: 28 cm acrylic

\[\text{SNR} = \sqrt{1 - \text{SF} \times \text{DQE} \times \text{SNR}} \]

X-ray Beam Solid Angle

Ω(\text{relative units})

Iodine SNR

<table>
<thead>
<tr>
<th>Year</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>98</td>
</tr>
<tr>
<td>1997</td>
<td>98</td>
</tr>
<tr>
<td>2003</td>
<td>98</td>
</tr>
<tr>
<td>2004</td>
<td>98</td>
</tr>
<tr>
<td>2006</td>
<td>98</td>
</tr>
</tbody>
</table>

Source & Detector Specs

- **70 kVp, 4.2 kWp, ~40% DQE**
- **100 kVp, 12.6 kWp, 62% DQE**
- **120 kVp, 24.3 kWp, 71% DQE**

Fluoro-quality

- **120 kVp, 24.3 kWp, 90% DQE**

Cine-quality

- **100 kVp, 12.6 kWp, 62% DQE**

Next Gen

- **100 kVp, 24.3 kWp, 110% DQE**

High Speed Multiplanar Tomosynthesis

- **Shift-and-backprojection at multiple planes**
- **16 planes per frame**
- **12 mm spacing**

Depth Focus Property

- **Rays through object originate from different spot positions**
- **In-plane**
 - High contrast, sharp appearance
- **Out-of-plane**
 - Low contrast, blurry

Plane Selection Algorithm

- **Multiplane Composite Display**

- **Pixel-by-pixel plane selection:**
 - Display pixel from plane with highest object focus metric
 - “Score stack” Gradient filtering
3D Catheter Tracking Algorithm

- Score Image Stack
 - Generate MIP along z axis
 - Perform 2D connected component labeling

- Extract score vs. z distribution
- Calculate center-of-mass along z

Output is a set of (x,y,z) coordinates for each image frame

Tracking Simulation Study (2008)

- Helix of 1-mm Pt spheres
- Tracking Accuracy & Precision

SBDX Prototype Geometry

- 0 5 10 15 20 25 30
 - Source power (kWp)
 - Z-coordinate Error (mm)
 - Z error: -0.56 ± 0.65 mm

Tracking Phantom Study

- 3M chest phantom
- Linear stage for catheter pullback
- Ablation catheter in trans-septal sheath

3D Tracking Demonstration

- Tracking performed in software using stored detector images
- 10 mm/sec pullback rate
- 15 frame/sec SBDX imaging
- 1850 photons/mm² at isocenter
Comparison with CT

- Tracked tip to sheath centerline: 1.0 +/- 0.8 mm (Tip diameter = 2.5 mm)
- 82% of tracked positions inside sheath volume

Inverse Geometry XRF & 3D Tracking

- Well-suited to long, complex cardiac interventions
 - Fluoroscopy at 15% skin dose rate
 - Real-time 3D tracking at end diastole

- Tracking works with standard catheters, any number of elements, and uses a single gantry angle, automatically registered to XRF system without calibration

3. XRF / 3D Roadmap Fusion

Laboratory of Amish Raval, M.D.
UW-Madison Cardiology

Targeted Cell-based Therapy for MI

- Stem cell therapy may improve left ventricle function after recent myocardial infarction (acute MI) [1]
- Direct endomyocardial cell injection requires guidance system beyond XRF in order to:
 1) Target peri-infarct region
 2) Avoid perforating friable infarct
- XRF / 3D MRI fusion enables device & target visualization while minimizing tissue contact [2]

Bi-plane XRF / 3D Fusion System

- Conventional Bi-plane
- Portable Fusion System
- Control Display
- Fusion Display
- PC Workstation
- Frame grabber (Helios eA, Matrox)
- DICOM
- MR or CT data
- Custom fusion software (C++)

XRF / 3D Fusion Procedure

- MRI Scanner
- Segmentation Workstation
- Slice Contours
- 3D Surface Generation
- Combine with 3D XRF Model
- C-arm Calibration (one-time)
- Projection Matrices
- Surface Projection and Overlay
- Fusion Display
- X-Ray Fluoroscopy
- Live Video
- Gantry Orientation
- Manual Adjustments
- Frames
- Frame Grabber

Porcine Study: Segmentation

- Pre-intervention MRI
- 3D Model
 - Red: LV endocardium
 - Yellow: infarct volume
- LV Endocardial contour
- Epicardial contour
- bSSFP scan
- DHE scan
- Infarct contour
- End diastole, end expiration

Porcine Study: Registration

- Manual Registration to Internal Anatomy
- Biplane Ventriculogram (end diastole, end expiration)
- Frontal plane
- Lateral plane
Porcine Study: Injections

Injected mixture:
- Iodinated contrast: intra-procedural myo. staining
- Iron oxide (SPIO): MRI visualization of injections
- Tissue dye: for post-procedure necropsy

Virtual 3D marker
Bullseye display

Porcine Study: Targeting Accuracy

Cath lab:
- Biplane XRF / 3D Fusion

Post-procedure:
- MRI
- Necropsy

6 animal studies:
- Study time: 24 +/- 12 min
- 28 injection sites:
 - Supposed distance: D2 – D1 = 3.6 +/- 2.3 mm

Yellow: infarct
Orange: injection

XRF / MRI Roadmap Fusion

- Targeting accuracy depends on the quality of:
 - Modeling of XRF system (gantry calibration)
 - Segmentation of 3D images (depends on modality)
 - Registration of 3D surface to live x-ray (landmarks)

- MRI and X-ray fusion method feasible and safe for targeted injections to the peri-infarct region
 - No myocardial perforation
 - Targeting error ~ MR slice thickness & in-plane resolution

- Portability and vendor-independence

Fusion System Development

- Desired features:
 - Respiratory and patient motion compensation
 - Ability to re-check registration throughout procedure
 - Cardiac gating
 - Automation, to the extent it is safe and reliable

- Automated device and anatomic landmark tracking
 - Conventional XRF tracking (2D imaging)
 - Ultrasound (3D imaging)
 - EAM systems (3D points)
 - Inverse Geometry XRF (tomosynthesis, 3D tracking)
Conclusion

Emerging Fluoroscopic Technologies

- Narrow scanning x-ray beam
- Inverted x-ray field geometry
- High speed multiplane tomosynthesis
- Low dose fluoroscopy
- 3D tracking capability

XRF Guidance: Advantages and limitations
- High quality, real-time imaging
- Device compatibility
- Simple, easy use
- Poor 3D visualization of devices and endocardial targets
- Radiation dose in long procedures

Inverse geometry XRF: Unique design and capabilities
- Narrow scanning x-ray beam
- Inverted x-ray field geometry
- High speed multiplane tomosynthesis
- Low dose fluoroscopy
- 3D tracking capability

XRF / 3D Fusion: 3D anatomy & function in the cath lab
- Enables novel cardiac interventions
- Non-contact visualization of function
- 3D soft tissue anatomy

Acknowledgements

University of Wisconsin
Amish Raval, M.D.
Andrew Klein, M.D.
Douglas Kopp, M.D.
Michael Van Lysel, Ph.D.
Michael Tomkowiak, M.S.
Karl Vigen, Ph.D.
Timothy Hacker, Ph.D.
Larry Whitesell

Financial support for this work was provided by:
NHLBI R01 HL084022
NovaRay Medical, Inc.
TripleRing Technologies, Inc.
Joseph Heanue, Ph.D.
Augustus Lowell, Ph.D.
Brian Witley, Ph.D.

Thank you!