Translational research with small animal IGRT

Andrew Hope, MD

Assistant Professor
Department of Radiation Oncology
University of Toronto

Staff Radiation Oncologist
Radiation Medicine Program
Princess Margaret Hospital

Assistant Professor
Department of Radiation Oncology
University of Toronto

“Good” models for translational research

- Should assess both tumor control and normal tissue effects
 - Relevant tumor model
 - Orthotopic tumor
 - Carcinogenesis
 - Normal tissue endpoints in conjunction with tumor

- Longitudinal studies with non-invasive endpoints
 - Physiologic measures
 - Imaging

Pre-clinical imaging modalities

- Pre-clinical imaging modalities
 - µCT
 - µSPECT
 - µPET
 - MR – 7T

- Pre-clinical imaging modalities
 - µUS
 - µOptical

Images courtesy of Visuals on Xenogen
Biologic variation is a significant factor in the clinic

- Inherent radiosensitivity and/or response to treatment may be as important as the dose itself
- Small animal irradiation can minimize biologic variation – inbred strains
- Evaluation of radiotherapy, chemotherapy, and biologic agents without confounding genetic heterogeneity

A challenging problem

- Glioblastoma
 - Very poor long-term prognosis
 - Radiotherapy alone insufficient
 - Some improvements with addition of temozolomide (~10% OS @ 5y)
- New treatments required
 - Novel targets continuously being explored
 - How to test to see if they improve outcomes?

A potential target

- Many brain tumors, gliomas express CXCR4
 - G-protein coupled receptor that drives cAMP levels
- Inhibition of CXCR4 with targeted agents slows tumor growth
 - Multiple cell lines
- Possible target for further clinical exploration?

An exploitable mechanism

- Tumors drive cAMP down via CXCL12/CXCR4 to sustain growth
- CXCR4 suppression elevates cAMP
 - Elevated cAMP suppresses tumor growth
- Rolipram (generic drug) elevated cAMP as well as more expensive targeted agent
An *in vivo* model

- Intracranially implanted bioluminescent tumors
 - U87-luc/NCR nude
- Growth can be tracked longitudinally with non-invasive imaging
- Tumor growth is slowed, but not halted
- What's the next step?

A rationale for pre-clinical IGRT

- High RT doses are needed to effectively treat brain tumors
- Concurrent chemotherapy with temozolomide is the current standard of care
- High RT doses in previous mouse model attempts was poorly tolerated
 - Adjacent critical structures! (Pharynx, esophagus, eye)
 - Concurrent chemotherapy

Experimental schema

- RT: 6x5 Gy MWFx2
- Temozolomide (21 mg/kg/d x 5d per month)
- Rolipram (5mg / kg continuously)

An important observation in vivo
A translatable result?

Bench to mouse... to clinic?

- Translational path
 - From basic science observation
 - Clinical relevant (staining patient samples)
 - Shown to be effective alone \textit{in vivo}
 - When added to 'standard' therapy \textit{in vivo} cured tumors

- Next stop... the clinic?
 - Novel agent in trials of pediatric patients with unresctable (and universally fatal) brain stem gliomas

A related clinical problem

- Radiation necrosis
 - Imaging methods currently don’t clearly differentiate from tumor
 - TMZ addition appears to make this effect more common
 - Up to 10% rate
 - Biopsy is usually required to prevent futile re-operation

An \textit{in vivo} normal tissue model

- Using a micro-IGRT device, sub-totally irradiate murine brain
 - 60 Gy / 10 fractions

- Monitor with small animal MR
Contrast-enhanced, T1-weighted, gradient-echo images

2 months 4 months 6 months

T2-weighted spin-echo images

Histology confirms necrosis

Mouse

Human

Tools for translation research

- Orthotopic tumor and normal tissue models
 - Biologic (targeted) agents
 - Chemotherapy
 - Timing
 - Contractions
- Modeling outcomes
 - Modulate dose to adjust TCP and NTCP
 - Model uncomplicated control
- Imaging questions
 - Novel imaging methods and modalities (PET tracers, MRI sequences, etc)
 - Imaging biomarkers to distinguish tumor from necrosis
- Therapy questions
 - Hypoxia targeting?
 - Sub-volume boosts to 'resistant' areas

Carcinogenesis models

Garbow et al., Clin Can Res 2008
Conclusions

- Potential for exploration with small animal IGRT is immense
 - Internal normal control tissue for experiments
- Many issues to consider for each potential application:
 - Biology
 - Stem cells
 - Tumor model
 - Endpoints
 - Radiotherapy
 - Fractionation
 - Dose distribution
 - Motion
 - Validation
- Drugs
 - Timing
 - Sequencing

Endpoints: Pre-clinical and Clinical

- Clinical
 - Symptoms
 - Histology
- Pre-clinical
 - Laboratory
 - Physiology
 - Imaging
 - Anatomic
 - Functional
 - Tumor endpoints

Acknowledgements: Washington University in St. Louis

- Daniel Low
- Strahinja Stojadinovic
- Enrique Izaguirre
- Simon Powell
- Joseph Deasy
- Issam El Naqa
- Jeffrey Bradley
- Sasa Mutic
- James Al Ray
- Divya Khullar
- Aditya Apte
- Kate Malinowski
- Eric Kiel
- And many more…
Acknowledgements:
Princess Margaret Hospital

• Patricia Lindsay
• David Jaffray
• Dick Hill
• Amudha Venugopal
• Steve Ansell
• Salomeh Jelveh
• Doug Moseley
• James Chow
• Graham Wilson
• Precision X-ray, Inc.
• (many more)