ACR MR Accreditation: Changes and the Expanding Role of the Medical Physicist

Edward F. Jackson, PhD
Department of Imaging Physics

Outline

- MRAP Requirements in 2001 (Release of initial QC manual)
- MRAP Requirements in 2004 (Release of first revision of QC manual)
- Changes of July 2005
 - 3.0T systems
 - Required submission of annual system evaluation test results and ongoing QC data
- Changes of July 2007
 - CME requirements
 - Fee structure changes
- New modules
 - Active: Cardiac
 - Pending: Breast, orthopedic, modular whole body
- Expected QC manual revisions
ACR MR Standard as of 2001

The ACR Standard for Diagnostic Medical Physics Performance Monitoring of Magnetic Resonance Imaging Equipment (1999) called for annual checks of:

- Physical / mechanical inspections
- Phase stability
- Field homogeneity
- Gradient calibration
- RF calibration for all coils
- SNR and uniformity for all coils
- Slice thickness and location accuracy
- Interslice RF interference
- Artifact evaluation
- Film processor QC
- Hard-copy fidelity
- Plus
 - Documented acceptance testing
 - Involvement of a qualified Medical Physicist OR MR Scientist.

Original Definition of QMP/MR Scientist

- Originally, involvement of a QMP/MR Scientist was strongly recommended, but not required.

- Definitions from original documentation (2001):
 - QMP – “ABR certified in Diagnostic Radiological Physics or Radiological Physics”
 - MR Scientist – “graduate degree in physical science involving nuclear MR (NMR) or MRI and should have three years of documented experience in a clinical MRI environment”
Medical Physicist / MR Scientist Responsibilities

• Performs acceptance tests
 – New systems before first patient scan
 – Following any major hardware or software upgrade

• Acquires baseline QC data acquisition and establishes action limits
 – Central frequency
 – Transmitter gain / attenuation
 – Geometric accuracy
 – High contrast resolution
 – Low contrast object detectability

• Artifact analysis

Medical Physicist / MR Scientist Responsibilities

• Laser camera QC
 – Establish operating levels (in consultation with laser film system service engineer)

• Acquire baseline data (using SMPTE test pattern)

• Corrective actions
 – Determination of whether problem lies in the camera, processor, and/or MR system
Medical Physicist / MR Scientist Responsibilities

Annual Physics Tests
- Magnetic field homogeneity
- Slice position accuracy
- Slice thickness accuracy
- RF coil checks
 - Signal-to-noise ratio (all coils)
 - Image uniformity (volume coils)
- Interslice RF interference
- Phase stability (ghosting)
- Soft copy displays (monitors)

ACR Accreditation Process Overview

Clinical Images
- Brain (for headache)
- Cervical Spine (for radiculopathy)
- Lumbar Spine (for back pain)
- Knee (for internal derangement)

Evaluated for 1) appropriate pulse sequence and contrast, 2) filming technique, 3) anatomic coverage and imaging planes, 4) spatial resolution, 5) artifacts, and 6) appropriate labeling, etc.

Must be acquired within ±1 week of phantom images.
Clinical Images

Routine brain examination (for headache)
- Sagittal short TR/short TE with dark CSF
- Axial or coronal long TR/short TE and long TR/long TE (e.g., long TR double echo) (Note: FLAIR can be used in place of long TR/short TE scan.)

Routine cervical spine (for radiculopathy)
- Sagittal short TR/short TE with dark CSF
- Sagittal long TR/long TE or T2*W with bright CSF
- Axial long TR/long TE or T2*W with bright CSF

Routine lumbar spine (for back pain)
- Sagittal short TR/short TE with dark CSF
- Sagittal long TR/long TE or T2*W with bright CSF
- Axial short TR/short TE with dark and/or long TR/long TE with bright CSF

Routine knee examination (for internal derangement)
- Sagittal and coronal with at least one sequence of bright fluid
Clinical Image Recommendations

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Slice thickness</th>
<th>Gap</th>
<th>Maximum Pixel Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain – Sagittal & Axial and/or Coronal</td>
<td>≤ 5 mm</td>
<td>≤ 2 mm</td>
<td>≤ 1.2 mm</td>
</tr>
<tr>
<td>Cervical Spine – Sagittal</td>
<td>≤ 3 mm</td>
<td>≤ 1 mm</td>
<td>≤ 1 mm</td>
</tr>
<tr>
<td>Cervical Spine – Axial</td>
<td>≤ 3 mm</td>
<td>≤ 1 mm</td>
<td>≤ 1 mm</td>
</tr>
<tr>
<td>Lumbar Spine – Sagittal</td>
<td>≤ 5 mm</td>
<td>≤ 1.5 mm</td>
<td>≤ 1.5 mm</td>
</tr>
<tr>
<td>Lumbar Spine – Axial</td>
<td>≤ 4 mm</td>
<td>≤ 1 mm</td>
<td>≤ 1.5 mm</td>
</tr>
<tr>
<td>Knee – Sagittal & Coronal</td>
<td>≤ 4 mm</td>
<td>≤ 1 mm</td>
<td>≤ .75 mm</td>
</tr>
</tbody>
</table>

ACR Accreditation Process Overview

Phantom Images

- Acquired on ACR MR Accreditation Phantom using specified T₁- and T₂-weighted protocols plus the site’s T₁- and T₂-weighted protocols (for brain imaging).
- Must be submitted in DICOM format on CD-ROM
- Evaluated for 1) geometric accuracy, 2) high contrast spatial resolution, 3) slice thickness accuracy, 4) slice position accuracy, 5) signal uniformity, 6) ghosting, 7) low contrast detectability.
ACR MR Accreditation Phantom

J.M. Specialty Parts
11689-Q Sorrento Valley Road
San Diego, CA 92121
619 794-7200
$730

ACR Phantom Scan Documentation

Contains information on:
- Phantom position
- Pulse sequences to be used
- Filming and data preparation instructions

Sent to site with Full Application
Available from www.acr.org
ACR Phantom Scan Documentation

Contains information on:
- Test analysis
- Performance criteria
- Common reasons for failure

Sent to site with Full Application

Available from www.acr.org

ACR Phantom Scans

- Sagittal Localizer
 - TE/TR=20/200ms, 25 cm FOV, 256x256, 1 20-mm, 1 NEX, 0:56
- ACR T₁ Axial Series
 - TE/TR=20/500ms, 25 cm FOV, 256x256, 11 5-mm slices (graphically prescribed), 1 NEX, 2:16
- ACR T₂ Axial Series
 - TE1/TE2/TR=20/80/2000ms, 25 cm FOV, 256x256, 11 5-mm slices (same locations as for ACR T1 series), 1 NEX, 8:56
- + Site T₁ and T₂ Axial Brain Series
ACR Accreditation Process Overview

1) Slice thickness and position, geometric accuracy, high contrast resolution
5) Geometric accuracy
7) Percent image uniformity, ghosting
8-11) Low contrast object detectability, and slice position (in #11)

Geometric Accuracy

ACR T1

Slice 1
Set WW & WL to min, then raise WL until 1/2 water is dark \(\text{mean}\)
Set WW to \(\text{mean}\) and WL to 1/2\(\text{mean}\)

Slice 5

Sag Loc

Criterion: ± 2 mm
Slice Position

ACR T1 & T2

Slice 1

Slice 11

Criterion: <5mm

Slice Thickness

ACR T1 & T2

Slice 1

Two 10:1 ramps

- Magnify image by 2-4x.
- Define two ROIs, one on each ramp.
- Obtain *average* intensity from the two ROIs.
Slice Thickness

Measurements:
- lower level to \(\frac{1}{2} \) average
- set window width to minimum
- measure lengths of top and bottom ramps
- calculate slice thickness

\[
\text{slice thickness} = 0.2 \times \frac{(\text{top} \times \text{bottom})}{(\text{top} + \text{bottom})}
\]

Criterion: 5.0±0.7 mm

High Contrast Spatial Resolution

- Magnify by 2-4x.
- Use UL for horizontal resolution and LR for vertical resolution.
- Must be able to resolve 1.0 mm holes vertically and horizontally.
Low Contrast Detectability

ACR T1 & T2

Slices 8-11
- Slice 8: 1.4%
- Slice 9: 2.5%
- Slice 10: 3.6%
- Slice 11: 5.1%

Criterion ≥ 9 spokes

Low Contrast: High vs. Low Field

1.5 T

0.3 T

Slice 11 - ACR T1 series
Percent Image Uniformity

ACR T1 & T2

Slice 7

Large ROI (195-205 cm²)

percent integral uniformity = 100 × \left(1 - \frac{\text{high} - \text{low}}{\text{high} + \text{low}}\right)

Criterion: PIU ≥ 87.5%

Ghosting

ACR T1

Slice 7

Ghost ratio = \frac{|\text{top+bottom}) - (\text{left+right)}|}{(2 \cdot \text{large ROI})}

Criterion: ≤ 0.025

ROIs ~ 10 cm² with ~4:1 length:width
Ghosting

Window and level to make sure ROIs are in background noise! (Warping of image space due to gradient nonlinearity corrections.)

Outcomes

- As of November 2006:
 - 5094 applications received / 4384 facilities accredited
 - 7363 units / 5950 accredited (currently active: 4747 / accredited: 3915)

- Initial application pass rate FY2006 (FY1997):
 - Initial: 69% (44%)
 - Confidential report sent with suggestions to correct any deficiencies
 - 2nd attempt: 100% (76%)
 - 3rd attempt: ---- (72%)

- Renewal application:
 - Initial: 72% (53% in FY2000)
 - 2nd attempt: 88% (91% in FY2000)

- Field strengths that have been accredited: 0.2 – 3.0 T
MRI QC Manual 2001 Overview

- Radiologist’s Section
 - Describes requirements and the role in a QA program
- Technologist’s Section
 - Outlines the recommended daily (weekly) QC tests
- Physicist’s / MR Scientist’s Section
 - Suggestions for setting up a QC program
 - Outlines recommended annual equipment performance tests

Medical Physicist / MR Scientist Responsibilities

Annual Physics Tests
- Magnetic field homogeneity
- Slice position accuracy
- Slice thickness accuracy
- RF coil checks
 - Signal-to-noise ratio (all coils)
 - Image uniformity (volume coils)
- Interslice RF interference
- Phase stability (ghosting)
- Soft copy displays (monitors)
Magnetic Field Homogeneity

One vendor’s “head equivalent” phantom.

Insert sphere can be used for homogeneity test.

(Remove sphere from cylindrical “loader” first. Place at isocenter in head coil.)

Magnetic Field Homogeneity

With sphere in head coil, use manual prescan.

Adjust center frequency twice to determine the “full width at half maximum” of the spectrum.
Magnetic Field Homogeneity

If scanner has spectroscopy capabilities, then the spectroscopy prescan page can be used to easily measure “frequency spread”.

Magnetic Field Homogeneity

Phase images from GRE sequences with 10ms difference in TE’s

Phase and Unwrapped Phase Images

The change in phase across the phantom is proportional to the inhomogeneity of the magnetic field.
Magnetic Field Homogeneity

- Either the FWHM technique (on a given spherical phantom) or the phase difference technique can be used to assess homogeneity if possible at a given site.

- Alternative: Use the service engineer’s report on homogeneity for your site records of homogeneity.
Slice Position Accuracy

Crossed wedges should be of equal length if position and spacing are accurate (and phantom is not tilted!)

Slice Thickness

Measurements:
- lower level to ½ average
- set window at minimum
- measure lengths of top and bottom ramps
- calculate slice thickness

\[
\text{slice thickness} = 0.2 \times \frac{(\text{top} \times \text{bottom})}{(\text{top} + \text{bottom})}
\]
Volume RF Coil Measurements

Must assess SNR, uniformity, and ghosting ratio for every volume coil.

ACR Phantom Slice #7

Volume Coils - SNR, Uniformity, and Ghosting

- Uniformity performance criteria: PIU ≥ 90%

\[100 \times \left(1 - \frac{\bar{S}_{\text{max}} - \bar{S}_{\text{min}}}{\bar{S}_{\text{max}} + \bar{S}_{\text{min}}} \right) \]

- SNR (no fixed criteria)

\[\frac{\bar{S}_{\text{ROI}}}{\sigma_{\text{noise}}} \]

- Percent Signal Ghosting

\[\frac{\bar{S}_{\text{Ghost}} - \bar{S}_{\text{Noise}}}{2 \times \bar{S}_{\text{ROI}}} \times 100 \]
Phased-Array Coils

Abdomen-Pelvis Phased Array

Torso Phased Array

Cervical-Cranial Phased Array

Example of a particular vendor’s C-T-L spine phased array coil

QC phantom
Surface RF Coil Measurements

Volume Coil Data

<table>
<thead>
<tr>
<th>% Image Uniformity</th>
<th>Max Signal</th>
<th>Min Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal-to-Noise</td>
<td>Mean Signal</td>
<td>SD of Background Signal</td>
</tr>
<tr>
<td>Percent Signal Ghosting</td>
<td>Ghost Signal</td>
<td>Mean Signal</td>
</tr>
</tbody>
</table>

Surface Coil Data

<table>
<thead>
<tr>
<th>Maximum Signal-to-Noise</th>
<th>Maximum signal</th>
<th>SD of Background Signal</th>
</tr>
</thead>
</table>
Slice Cross-Talk Measurements

1. Position 5mm slices on the uniform volume (slice 7)
2. Repeat measurements decreasing the slice gap:

<table>
<thead>
<tr>
<th>Series #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Slices</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Slice Gap (mm)</td>
<td>min</td>
<td>0.5</td>
<td>1.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

- Measure the signal-to-noise ratio (SNR) for each of the image sets.
- Plot the SNR vs. percentage slice gap

Signal-to-Noise vs Inter-slice Gap

![Graph showing signal-to-noise ratio vs. percentage slice gap]
Soft Copy Displays

Four tests:
- Maximum and minimum luminance
- Luminance uniformity
- Resolution (SMPTE)
- Spatial accuracy (SMPTE)

• Max luminance (WL/WW min): ≥90 Cd/m²
• Min luminance: <1.2 Cd/m²
• Luminance uniformity: Each of the luminance values obtained at the four corners of the screen should be within 30% of the maximum value measured at the center (WL/WW min).
• Resolution: Use SMPTE 100% contrast patterns (see QC manual, p. 117).
• Spatial accuracy: Use SMPTE grid pattern (see QC manual, p. 117).
QC Manual 2004 Revisions

Minor revisions were made to the QC manual in 2004:
- Daily frequency of technologist tests changed to weekly.
- Correction of minimum OD control limit typo (±0.08 instead of ±0.80).
- Correction of equation for calculating magnetic field inhomogeneity from phase map data.
- Luminance uniformity measurement changed to be consistent with recommendations of AAPM TG18.
- Correction of minor typographical errors.

Significant Changes in July 2005

- First requirement for submission of annual MRI System Performance Evaluation test report and ongoing QC records as part of the initial accreditation or reaccreditation review process.

- 3.0T scanners could become accredited
 - First incorporation of field strength specific pass criteria!

- First statement (on www.acr.org) that a QMP/MR Scientist is required.
Submission of QC Documentation

3. Does the ACR require that a physicist or MR scientist perform testing services for a facility to apply for accreditation?

Starting July 1, 2005, sites applying for MRI accreditation must submit an annual MRI system performance evaluation performed by a medical physicist or MR scientist. A technologist may still perform the ACR phantom portion of the accreditation submission, although the ACR strongly recommends the services of a medical physicist or MR scientist for this also.

Sites must submit annual test report and most recent quarter of daily / weekly QC records. Data is reviewed by ACR staff based on checklist developed by the MRAP MR Physics Subcommittee.

Submission of QC Documentation

A qualified medical physicist/MR scientist should have the responsibility for overseeing the equipment quality control program and for monitoring performance upon installation and routinely thereafter. All facilities applying for accreditation or renewal must demonstrate compliance with the ACR requirements for quality control (QC) by including a copy of the facility’s most recent Annual MRI System Performance Evaluation (must be dated within 1 year of the date of ACR MRI submission for accreditation) and copies of the facility’s weekly on-site QC data (forms on pages 64, 65, and 66 of the 2004 ACR MRI Quality Control Manual) for the most recent quarter. If the facility has been conducting QC for less than one quarter, the facility will submit whatever they have on these forms. Additionally, if the Annual MRI System Performance Evaluation and/or QC files show performance deficits (e.g. problems with the system and/or data outside of the action limits), the facility must state what steps it has taken to correct the problems. All QC testing must be carried out in accordance with the written procedures and methods outlined in the ACR 2004 MRI Quality Control Manual.
13. Does the ACR accredit 3.0-T magnets?
Yes. Starting July 1, 2005 the ACR will be accepting MRI accreditation applications for 3.0-T magnets. In order to accurately measure the performance of these units, 2 of the physics tests performed for ACR accreditation will have different pass/fail criteria for 3.0-T units. For the low-contrast object detectability (LCOD), the required number of total spokes for a 3.0-T magnet is equal to or greater than 37. For the image intensity uniformity, the required percent integral uniformity (PIU) for a 3.0-T magnet is equal to or greater than 82%.
3.0T System Issues - Uniformity

Fig. 2. Above, experimental gradient recalled echo image (30° flip angle) at 3.0T. (A) and (B) profiles of cylindrical phantoms, radius 9.25 cm, filled with 0.05 molar NaCl. Below (C) and (D), computer simulations of same, at 120 MHz, with $c = 0.5$ and $\sigma = 0.5$.

Available online at www.sciencedirect.com

Communications

Image brightening in samples of high dielectric constant

James Tropp*

General Electric Medical Systems, 6000 Westinghouse Drive, Waukesha, WI 53181, USA

Received 13 May 2003; revised 12 November 2003

Fig. 3. As in Fig. 2 above, except images taken at 4.0T, and simulations done at 170 MHz. The asymmetry of the experimental image and profile is due apparently to distortion of the RF homogeneity, probably due to in vivo loading of resonator by the phantom, as noted in...
Changes in July 2007

- Introduction of MR specific CME requirements for QMP / MR Scientists

- Increase in fee structure
 - First magnet - $2,400
 - Second and subsequent magnets - $2,300
 - Initial magnet added mid-cycle - $1,400
 - Repeat fee - $800

<table>
<thead>
<tr>
<th>Sites renewing in:</th>
<th>Continuing Education Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2007</td>
<td>Physicians and medical physicists/MR scientists must have earned at least 5 CME (category 1) hours in the prior 12-month period. The 5 CME hours must be earned for each modality in which they are renewing (CT, MRI, nuclear medicine, PET and ultrasound).</td>
</tr>
<tr>
<td>July 2008</td>
<td>Physicians and medical physicists/MR scientists must have earned at least 10 CME (half of which must be category 1) hours in the prior 24-month period. The 10 CME hours must be earned for each modality in which they are renewing (CT, MRI, nuclear medicine, PET and ultrasound).</td>
</tr>
<tr>
<td>July 2009</td>
<td>Physicians and medical physicists/MR scientists must have earned at least 15 CME (half of which must be category 1) hours in the prior 36-month period. The 15 CME hours must be earned for each modality in which they are renewing (CT, MRI, nuclear medicine, PET and ultrasound).</td>
</tr>
</tbody>
</table>
New Module in 2006

Cardiac Magnetic Resonance Imaging Program
- Same phantom and phantom acquisitions as for whole body program
- Same requirements for annual testing and ongoing QC record requirements
- Same costs as for whole-body program ($2,400 first magnet / $2,300 subsequent magnets at the same radiology group at the same facility address)
- Medical Physicist / MR Scientist requirements – same as for whole-body program

Cardiac MRI Module

Cardiac Magnetic Resonance Imaging Program
- Clinical exams required:
 - Black blood exam (e.g., SE, FSE/TSE) – one exam
 - T1W or PDW
 - Axial or short-axis plane
 - Cardiac gated
 - Must cover entire heart
 - Delayed enhanced exam - two exams
 - Short axis cines
 - Long axis cines (2-chamber and 4-chamber views)
 - Delayed enhanced Gd (IR-prepped)
Cardiac MRI Module

Cardiac Magnetic Resonance Imaging Program (cont)

- Clinical exams required (cont):
 - Basic cardiac exam – one exam
 - Short axis cines (SSFP preferred)
 - Entire left ventricle from base to apex
 - Long axis cines
 - Two-chamber view
 - Four-chamber view
 - Left ventricular aortic outflow tract view

Other (Probable) Upcoming Changes

- Changes to the Whole Body MR Program
 - Introduction of modular design as opposed to “one size fits all” current design requiring brain, C-spine, L-spine, and knee scans.
 - Six modules: Brain, Spine, Body, MSK, MRA, Cardiac
- Breast MR Module
- Orthopedic MR Module (will require dedicated phantom)
- Revised Quality Control Manual (probably fall 2007)
Anticipated Changes

Anticipated Revisions to QC Manual 2004
 - Eliminates the RF slice interference component.
 - Qualifications of a QMP are modified to include either ABR certification (diagnostic radiological physics or radiological physics) or ABMP (magnetic resonance imaging physics). (Need to continue to push for certification of “MR Scientists”, e.g., require ABMP MR physics certification.)
- Will revisit magnetic field homogeneity assessment.
- Will revisit percent uniformity evaluations
- Will revisit soft copy display evaluations

Expanding Roles of QMP

How can QMPs/MR Scientists contribute to the expanding MRAP efforts:
- Education
 - Common pitfalls, consults with radiologists re: protocols, etc.
- Involvement during:
 - Initial accreditation phase
 - Acquisition and data review of phantom scans
 - Advice on clinical scan protocols
 - Establishment of QC program procedures and action limits
 - Ongoing QC processes and reaccreditation
 - Annual MRI System Performance Evaluations and reports
 - Review of ongoing weekly/daily QC data / records.
Expanding Roles of QMP

How can QMPs/MR Scientists contribute to the expanding MRAP efforts:

– Education
 • Common pitfalls, consults with radiologists re: protocols, etc.
 • Some examples:
 – Phantom data acquired using multielement array head coils can/should be processed using “surface coil intensity correction” algorithms as long as such algorithms are used for clinical scans.
 – Clinical protocols with insufficient spatial resolution, contrast, etc.
 – Phantom data CD-ROM submitted without being reviewed by a QMP/MR Scientist and/or missing data sets, typically the sagittal loc.
 – Phantom data CD-ROM submitted with embedded viewer (which is directly counter to the instructions) and/or compressed DICOM format.

Common Problems and Artifacts
Potential Causes of Geometric Accuracy Failures

- Poor phantom positioning - relatively common problem
- Poor gradient calibration
- B_0 inhomogeneity
 - Ferromagnetic objects in magnet
 - Poor magnet shimming
- Gradient non-linearity (not appropriately corrected)
- Inappropriate receiver bandwidth
- Poor eddy current compensation
- Combination of two or more of above

Poor Positioning

Rotation (in-plane)
Poor Positioning

Rotation (through-plane, RL)

Poor Positioning

Rotation (through-plane, AP)
Sources of Geometric Distortion

• System Limitations
 – Poor B_0 homogeneity
 – Linear scale factor errors in the gradient fields
 – Field distortion due to induced eddy currents
 – Nonlinearities of the gradient fields

• Object-Induced
 – Chemical shift effects
 – Magnetic susceptibility variations (object induced)

Air Bubbles

When a large air bubble is present in the phantom, geometric distortion measurement may have to be taken along diagonal instead of vertical.
Low Acquisition Bandwidth

Note distortion as well as increased susceptibility artifacts.

Air Bubbles

16 kHz 8 kHz
High Contrast Spatial Resolution

Common causes of failure:

- Incorrect FOV or matrix size
- Poor gradient calibrations
- Excessive filtering (smoothing)
- Poor eddy current compensation
- Gradient amplifier instability
Big ROI ~ 195 cm²
(19,500 mm²)

Small ROI’s ~ 1 cm²
(100 mm²)

Common causes of failure:
- Poor phantom centering in coil (usually in AP direction)
- Ghosting
- Motion or vibration
- Mechanical failure in head coil

Note: Uniformity becomes poorer with increasing B_o (especially above 2 T) because of dielectric field focusing phenomenon (aqueous phantom).
Percent Signal Ghosting

• Must pass on slice #7 of ACR T1-weighted axial series.
• Ghost signal is measured and reported as percentage of the signal in the true image.
• Excessive ghosting in other images may be counted as “Unacceptable Artifact.”

Phase Ghosting

Image compliments of Geoff Clarke, Ph.D.
Ghosting is Nonspecific

- Instability in MRI signal from pulse to pulse
- Phantom motion
- Loose connections or bad cable
- Partial failure of radiofrequency coils or gradient subsystem
- Pulse sequence calibration error
 - Eddy currents in Fast Spin Echo series

Ghosting

Ghosting may obscure otherwise visible LCD spokes

Image compliments of Geoff Clarke, PhD
Low Contrast Detectability

ACR T1 & T2

Slice 8: 1.4%
Slice 9: 2.5%
Slice 10: 3.6%
Slice 11: 5.1%

Some common causes of failure:

- Incorrectly positioned slices
 Contrast based on partial volume averaging
- Tilted phantom
- Incorrect slice thickness
- Ghosting
- Inadequate SNR
DC Offset Artifacts

- Zero frequency artifacts
- Not important if off to the side

Large artifact off to side. NEX=1; frequency shifted

Image compliments of Geoff Clarke, Ph.D.
Susceptibility Artifacts

Small inclusions in LCD insert can make analysis difficult.