BIOLOGICAL INDICES IN TREATMENT PLANNING: A CLINICAL PERSPECTIVE

Mary K. Martel, Ph.D.
Department of Radiation Oncology
University of Michigan Medical Center
Ann Arbor Michigan

Evaluation of 3D treatment plans is often limited to inspection of dose distributions in 2D, or at most, to analysis of dose-volume histogram (DVH) statistics. In the last several decades, biological models have been developed that use 3D dose-volume information as input. The purpose of the models is to predict the normal tissue complication risk or tumor control probability and, so, can be used to “score” plans based on an index of risk versus cure. The predictive power of the models is assessed through analysis of complication or control data before they can be considered reliable for clinical treatment planning. Consequently, model parameters may need to be adjusted. Aspects of the models may be used in the design of dose escalation trials to gather normal organ tolerance data in a safe and systematic fashion. Biological indices can be used in cost functions in automated optimization planning systems to aid in the determination of the “optimal” treatment plan.

This refresher course will attempt to elucidate the:
1) Analysis and correlation of 3D dose distributions with complication or tumor control data;
2) Description and use of biological models to design and evaluate treatment plans;
3) Development of cost or score functions (with biological indices) for treatment plan optimization.
A partial list of relevant REFERENCES:


Bortfeld T. Optimized planning using physical objectives and constraints. [63 refs] Seminars in Radiation Oncology. 9(1):20-34, 1999 Jan

Brahme A. Optimized radiation therapy based on radiobiological objectives. [41 refs] Seminars in Radiation Oncology. 9(1):35-47, 1999 Jan


Lawrence TS. Kessler ML. Ten Haken RK. Clinical interpretation of dose-volume histograms: the basis for normal tissue preservation and tumor dose


Withers HR. Biologic basis for altered fractionation schemes. Cancer. 55(9 Suppl):2086-95, 1985 May 1