

Body CT: What is a Good Exam?

J. G. Fletcher, MD

Associate Professor of Radiology

CT Clinical Innovation Center
Department of Radiology

Mayo Clinic, Rochester MN

DISCLOSURES

Research Support:

Siemens Healthcare

Off Label Usage
None

Overview

- "Good" exam
- Optimization for body imaging
 - organs
 - diseases
 - superfluous imaging
 - implementation
- "Diagnostic image quality"

Justified

Justified

Benefit

Risk

"An alternative way of stating [benefit] is that the risk of not performing the examination must exceed the risk of the examination."

Justification

- Based on patient risk
 - Symptomatic
 - Asymptomatic
- Appropriateness
 - Compared to alternatives
- Ameliorating Factors
 - Patient co-morbidities & compliance
 - Local expertise & availability

Risk & Benefit unique for each individual

American College of Radiology ACR Appropriateness Criteria[®]

Clinical Condition: Crohn's Disease

<u>Variant 1:</u> Adult; initial presentation (abdominal pain, fever, or diarrhea); Crohn's disease

suspected.

Radiologic Procedure	Rating	Comments	RRL*
CT abdomen and pelvis with contrast (CT enterography)	9		High
X-ray small-bowel follow-through	7		Med
CT abdomen and pelvis with contrast (routine)	6		High
X-ray contrast enema			

Not linked with suggested acquisition protocols

X-ray abdomen

(MR enterography)

US abdomen and pelvis 5
US pelvis endorectal 3
Tc-99m HMPAO leucoscintigraphy 3

Rating Scale: 1=Least appropriate, 9=Most appropriate

MRI abdomen and pelvis with contrast

Don C. Rockey, MD⁹; Gary S. Sudakoff, MD¹⁰; Richard Gunderman, MD, PhD¹¹; Brian D. Coley, MD. 12

Summary of Literature Review

Crohn's disease (CD) is a chronic inflammatory disease involving the gastrointestinal tract. The etiology is unknown, but evidence suggests that a genetic predisposition combined with an abnormal interaction between the gut and enteric microorganisms may play a role in the pathogenesis. Patients usually present with the

CROHN'S DISEASE

James No single di MPH²; The imaging MD⁴; provide supp MD⁶; Imaging is co MD⁸; other condition MD¹⁰; of small-bow MD. 12 ulcerative co

> In the last d been develop and surgeon [3]. The succesubtypes of nature and e sufficient for CD—he or s

• Justified

Optimized

Use doses that are as low as reasonably achievable (ALARA) without compromising diagnostic task.

Justified

Optimized

Use doses that are as low as reasonably achievable (ALARA) without compromising diagnostic task.

Adapts CT acquisition to patient and disease

Justified

Optimized

Considers many other factors other than radiation dose

- type, rate of IV contrast, phase of enhancement
- type, amount & timing of enteric contrast
- alternative modalities
- patient-specific factors

Optimization

Maximizing disease detection while minimizing dose and non-radiation risk

- CT acquisition parameters that affect
 - spatial & temporal resolution, contrast/noise, timing
- Patient preparation oral and intravenous contrast delivery
- Visual assessment of critical structures & relevant CT data
 - radiologist review
 - image reconstruction & post-processing (3D, 2D MPR, DE)

Optimization

Maximizing disease detection while minimizing dose and non-radiation risk

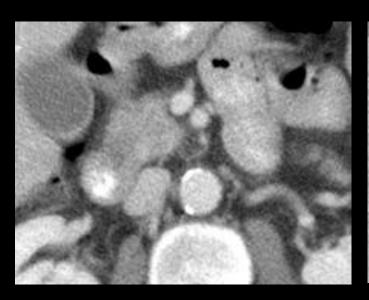
- CT acquisition parameters that affect
 - spatial & temporal resolution, contrast/noise, timing
- Patient preparation oral and intravenous contrast delivery
- Visual assessment of critical structures & relevant
 CT data
 - radiologist review
 - image reconstruction & post-processing (3D, 2D MPR, DE)

Optimization of CT Acquisition

Disease/Patient Consideration

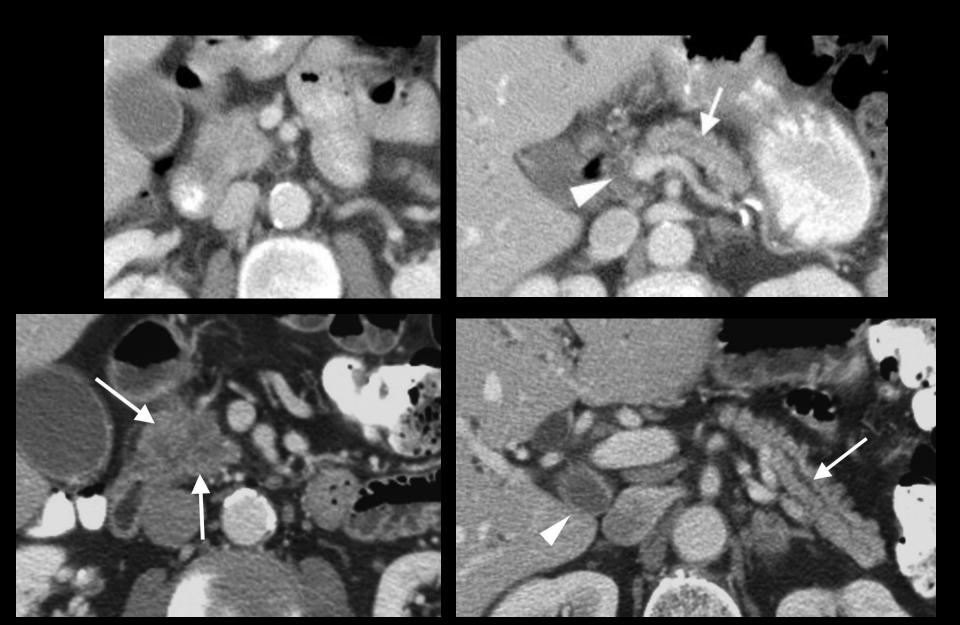
Parameters Under User Control

Optimization of CT Acquisition


Disease/Patient Consideration

- Size of index pathology
- Temporal importance of enhancement, # phases
- Contrast (lesion-tobackground)
- Organ
- Size of patient
- Lesion depiction
- Consequence of false negative

Parameters Under User Control


- Collimation, slice thickness
- Table speed, heat capacity of tube, collimation, scanner
- Oral & IV contrast, rate of injection, kV
- Tube current, slice thickness
- Slice thickness, tube rotation,
 kV, generator power, scanner
- Image reconstruction & postprocessing, dual energy
- Dose image reconstruction

Slice Thickness

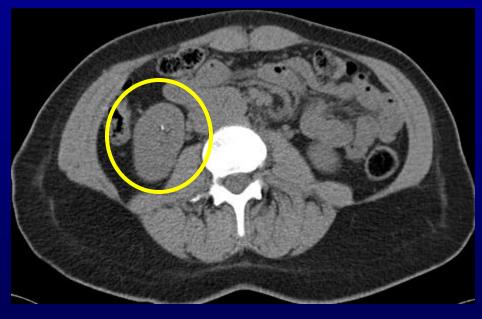
Slice Thickness

Slice Thickness

- Survey or follow-up − 5 mm
- Liver, pancreas, bowel $\leq 3 \text{ mm}$

Slice Thickness and Dose

- Dose reduction possible with thin slices when a lot of contrast defines lesion
 - Colonography
 - Enterography
 - Renal stone

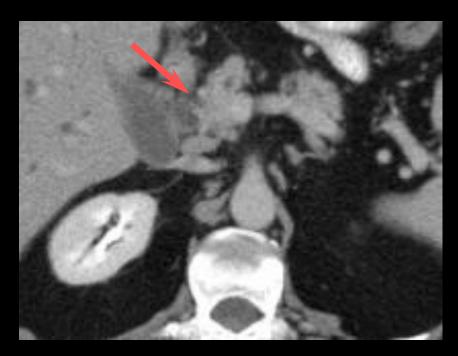

Low Dose Renal Stone CT

Indications

- Known stone disease + prior CT
- Pts with symptoms highly suspicious for ureteral stone (i.e., acute renal colic)
- Pregnant patients with equivocal US results (US is 1st line imaging test)
- Pre-contrast imaging for CT Urography
- Exclusions > 50 cm or metal
- Drop QRM from 240 to 100 mAs

155 lbs (71 kg)

11-06-06 100 effective mAs 10-23-06 240 effective mAs


Slice Thickness and Dose

 Dose reduction not a good idea for subtle tumors in complex, solid organs

- Pancreas
- Liver
- Our dose settings are about 30% higher in liver and pancreas CA

Phase of Enhancement

Portal Phase

Pancreatic Phase (lower kV)

Phases of Enhancement

Designed to maximize organ or tumor enhancement

- Early arterial
- Late arterial
- Pancreatic
- Enteric
- Portal
- Delayed

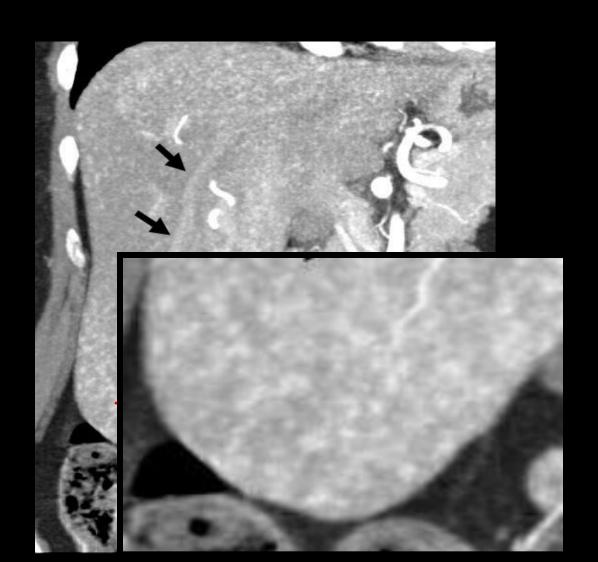
enhancement

— Tumor Washout & GU

Phases of Enhancement

Designed to maximize organ or tumor enhancement

- Early arterial
- Late arterial
- Pancreatic
- Enteric
- Portal
- Delayed


- Bolus-triggered, 15 20 s –
 CTA, HHT, islet cell
- 18 sec post trigger, 35 s
 - HCC
- 20 sec post trigger, 45 s
 - Max panc to tumor, p ACA
- 20 sec post trigger, 50 s
 - Max bowel enhancement, Crohn's
- 40 sec post trigger, 65 70 s
 - Portal + HV opacified, workhorse
- 3-5 minutes
 - Tumor washout, Urothelium

Phases of Enhancement

- Liver arterial (early or late), portal, delayed
- Pancreas pancreatic, portal
 - Use both for first time tumor and pancreatitis
 - Pancreatitis f/u with single phase
- Kidney CM(30), Arterial (45), Nephrographic (90-100), Delayed
- Small bowel enteric, ± arterial, ± delayed
 - Multiphase scanning mesenteric ischemia, occult
 GI blood loss
- Colon portal or enteric

Spatial & Temporal Resolution Increase Benefit

Common Tumor Rule Outs

- Liver R/O HCC
 - Higher dose
 - -2-3 mm slice
 - Late arterial (tumor blush), portal, delayed phase (tumor washout)
 - Axial + coronal
- Pancreas R/O pancreatic adenocarcinoma
 - Higher dose
 - 2 3 mm slice (pancreatic duct)
 - Pancreatic (tumor detection), portal (veins & liver)
 - Axial + coronal

Optimization of CT Acquisition

Disease/Patient Consideration

- Size of index pathology
- Temporal importance of enhancement, # phases
- Contrast (lesion-to-background)
- Organ
- Size of patient
- Lesion depiction
- Consequence of false negative

Parameters Under User Control

- Collimation, slice thickness
- Table speed, heat capacity of tube, collimation, scanner
- Oral & IV contrast, kV
- Tube current, slice thickness
- Slice thickness, tube rotation, kV, generator power, scanner
- Image reconstruction & postprocessing, dual energy
- Dose, image reconstruction

Size of the Patient

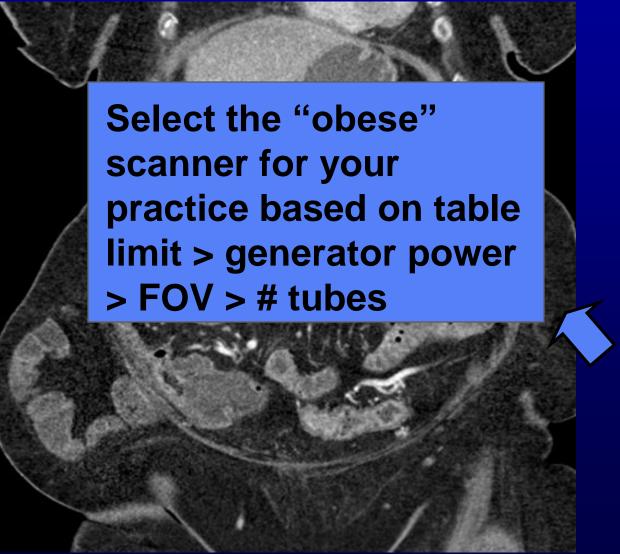
Technique should *always* be adapted to patient size

- -Minimize dose
- -Maximize contrast (?kV, oral and IV) and image quality

Adapting for Smaller Patients

- AEC
- Technique charts
- kV selection
- Decreased dye load
- Oral Contrast

Morbidly Obese Imaging



Problems

- Image quality (artifacts, CT number)
- Time of scan > breathhold, multiphase timing
- Heat capacity
- FOV
- Table limit

Morbidly Obese Imaging

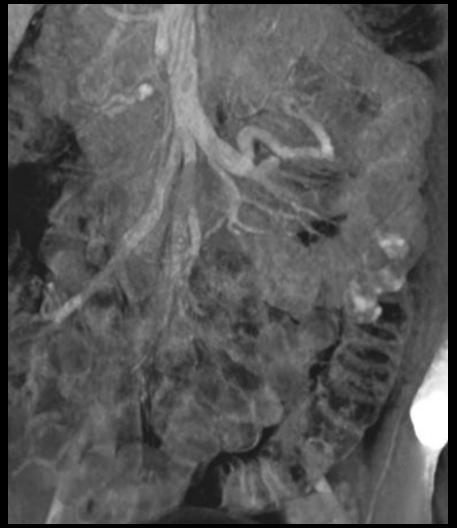
Problems

- Image quality (artifacts, CT number)
- Time of scan > breathhold, multiphase timing
- Heat capacity
- FOV
- Table limit

Morbidly Obese Imaging

- Increase mAs at 120 kV (slow table speed)
- Choose a thicker
 detector width (e.g., 24 x
 1.2 mm) & slice thickness
- Increase tube energy to 140 kV
- Employ dual source, if possible
- Slow rotation time to 1 rot/s

Problems


- Image quality (artifacts, CT number)
- Time of scan > breathhold, multiphase timing
- Heat capacity
- FOV
- Table limit

Maximizing disease detection while minimizing dose and non-radiation risk

- CT acquisition parameters that affect
 - spatial & temporal resolution, contrast/noise, timing
- Patient preparation oral and intravenous contrast delivery
- Visual assessment of critical structures & relevant
 CT data
 - radiologist review
 - image reconstruction & post-processing (3D, 2D MPR, DE)

Oral and Intravenous Contrast Increase Benefit

Individualization of Patient Prep

Parameters to Consider

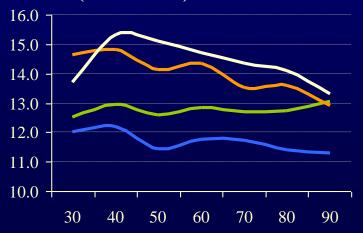
- Iodinated contrast (type, injection rate/delivery)
- Enteric contrast
- Bowel prep and tagging

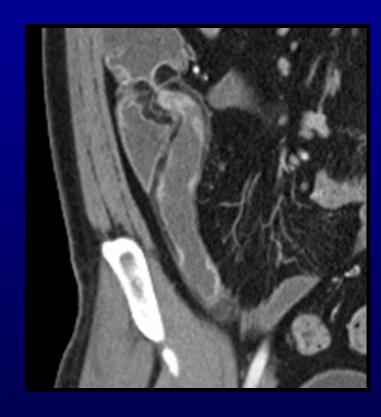
Disease/Patient Consideration

- Organ, temporal enhancement
- Lesion-to-background contrast differences
- Need for bowel distension & volume challenge
- Colonography

Iodinated IV Contrast

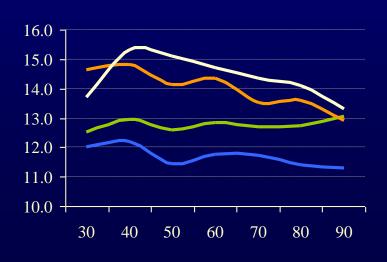
- Highly idiosyncratic
- Concentration and rate of injection affect enhancement

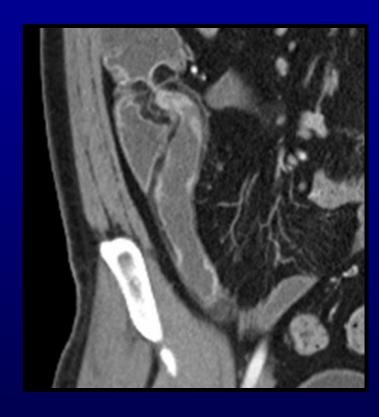

PREP DELAY TABLE* INJECT AT THE HIGHEST RATE POSSIBLE Injection Rate (cc/s) Pancreatic Phase (sec) Portal Phase (sec) 3 45 70 4 40 65 5 35 60


 Fixed amount/rate vs. weight-based/fixed injection duration, blended

Oral Contrast Agents

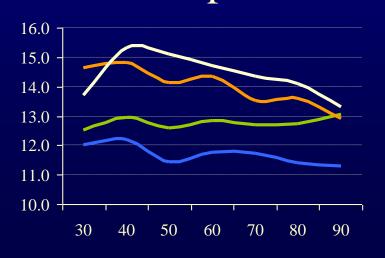
- Positive oral contrast agents – ca, screen
 - Barium or iodine
- Neutral agents SB,
 CTA
 - Water, PEG, Volumen (sorbitol)

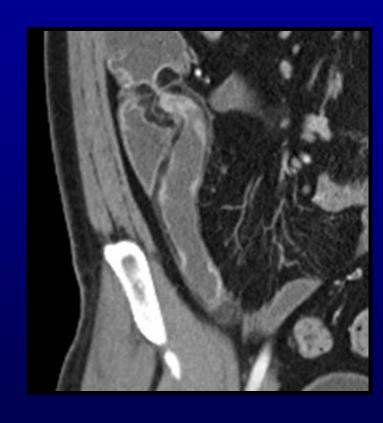



Young BM, et al. JCAT 2008

Oral Contrast Agents

- Administration
 - Amount
 - Timing of aliquots
 - Timing of scan
 - Bathrooms




Young BM, et al. JCAT 2008

Oral Contrast Agents

- Positive ~ 500 x 2,20 min apart
- Neutral ~ 500 x 3 +
 500 water, 15
 minutes apart

Young BM, et al. JCAT 2008

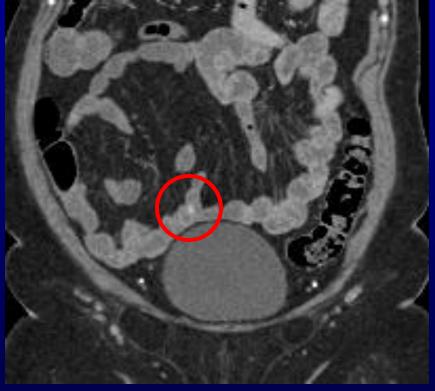
Maximizing disease detection while minimizing dose and non-radiation risk

- CT acquisition parameters that affect
 - spatial & temporal resolution, contrast/noise, timing
- Patient preparation oral and intravenous contrast delivery
- Visual assessment of critical structures & relevant CT data
 - radiologist review
 - image reconstruction & post-processing (3D, 2D MPR, DE)

Individualization of Visual Evaluation

Disease/Patient Consideration

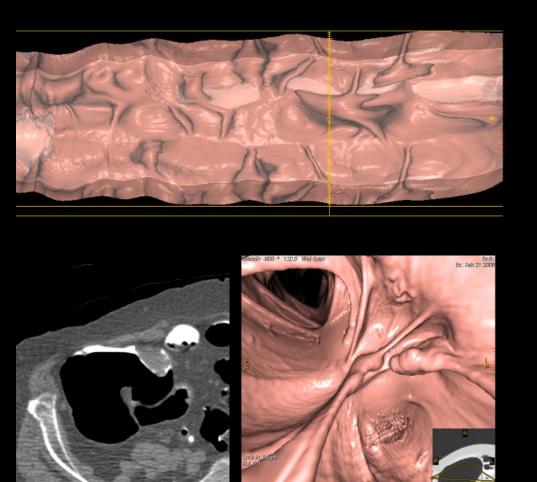

- Will two planes increase conspicuity?
- ? 3D structure with large contrast differences
- Will material classification assist in diagnosis?
- Are the images too noisy?

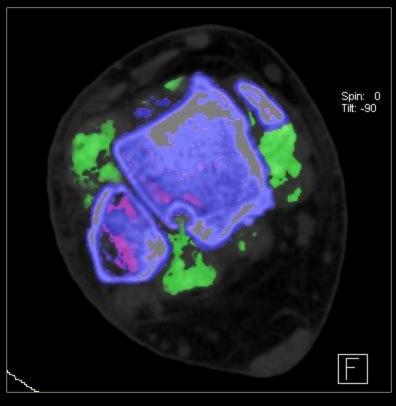

Review/Recon/Processing

- Automatic 2D MPR's
- Interactive 3D (angio, colon)
- Dual energy processing
- Noise reduction methods

Coronal Images Increase Confidence

Courtesy Dr. Jim Huprich




Don't Give Me Any Coronal Image!

Axial Coronal

Image reconstruction and postprocessing improve benefit

Superfluous Series

Easiest way to minimize dose without affecting diagnostic accuracy is to eliminate phases that do not contribute to diagnosis

Superfluous Series

Non-contrast series in multiphase exam

- Useful for renal stones, initial pancreatitis (CBD stone)
- Generally not useful
 - Multiphase liver imaging*
 - F/U pancreatitis
 - Pancreatic mass evaluation

Superfluous Series Delayed series in multiphase exam

- Useful for
 - urothelial neoplasm
 - Tumor "washout" HCC, RCC
 - Post-op GU
- Generally unhelpful
- Appropriateness guidelines often comment

Follow-up Exams

- Renal stone protocol low dose
- Pancreatitis single phase
- Other tumors single phase

Maximizing disease detection while minimizing dose and non-radiation risk

- CT ac
 - spa
- Patier delive
- VisuaCT da

Impact of acquisition and visual assessment modifies both risk and benefit.

timing

contrast

relevant

- radiologist review
- image reconstruction & post-processing (3D, 2D MPR, DE)

Individualization

Individualization

Your Scanner and Allied Health Staff

COMPUTED TOMOGRAPHY

eProtocol System

PROTOCOLS

PROTOCOL SUPPLEMENTS

Abdominal

Cardiac

NEW Line Placement Verification

Musculoskeletal

Neuro

Research

Thoracic

Vascular

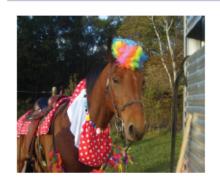
NEW Biopsy Mode Information

Miscellaneous Information

Nursing Information

Technique Charts

TUTORIALS AND REVIEWS


Scanning Larger Patients

Reformatting

Bellows System

Neuro PCT Analysis

NEWS AND ANNOUNCEMENTS

QUICK REFERENCE

PHYSICS FLASH CARD

Exams for Advanced Imag Processing Lab (AIPL/3D)

Film Printing Instructions

Heart Anatomy

Lead Shielding Policy

Metric Conversion Chart

Networking

No Charge Billing

Radiographic Anatomy

Scanner Startup/Shutdown

Shutdown with Maintenance

Temporal Bone CT Anatomy

ER PATIENT?

ACTOPDEMTS N'T CLICK THROUGH THE

Follow these steps to get more photons, in an order that makes the most sense for the specific exam.

- Decrease pitch (will increase scan time)
- Increase collimation, then decrease pitch (increases min. slice width)
- Increase kV
- (need to set new mAs) Increase rotation time

(will increase scan time)

If the acquired scans are too noisy, try the following.

- Use a smoother kernel (B10, B20, if rings use B18)
- Recon to thicker slices

See the updated Scanning Larger Patients instructions for more info.

IN-SERVICE

"Imaging Economics 101" in the Mayo 16 Lecture Hall at 7am on April 9,2010 with Dr. T. Welch speaking

BIOPSIES ANYBODY ????

New info regarding biopsies in the Biopsy Mode Techniques - new links and great reminders

Any suggestions for improving the eProtocols? Send a note to us at:

Radiology CT Protocol

(in Outlook's global address list)

Please restart the eProtocol viewers every morning! Click for more info.

COMPUTED TOMOGRAPHY

eProtocol System

ABDOMINAL PROTOCOLS ABDOMINAL PROTOCOLS ABDOMINAL PROTOCOLS Kidney - Triphase - Renal Mass. Pre Abdomen & Pelvis – Routine & Initial Post Ablation, and Partial Nephrectomy Adrenals - Targeted/Thin Kidney Biphase – FU RCC Radical Nephrectomy, 2nd Post Ablation, Colonography – Routine & and Partial Nephrectomy Failed Colonoscopy Kidney – (CTA and Venous) Pre Op Colonography – w/ Contrast for Vascular Mapping Colorectal Lesion Kidney – Renal Stone Cystogram Kidney – Renal Stone Composition (DE) **Enteroclysis – with Neutral Enteric** Kidney – Renal Stone, Low Dose CTU - Type I Contrast Kidney – Renal Stone Quantification CTU - Type II **Enteroclysis – with Positive Enteric** Liver – Bi-Phase Contrast CTU - Type III Liver – Cholangiogram (Siemens) Enterography (Single Phase) CTU - Type IV Liver – Tri-Phase for Cirrhosis, HCC, Enterography LD (Single Phase) CTU - Type V and Hepatoma Enterography (Bi-Phase) -Liver - HHT For Mesenteric Ischemia Liver – Living Donor (Pre-Op) (Siemens) Enterography (Tri-Phase) – For GI Bleeding Liver – Living Donor (Post-Op) (Siemens) **Esophageal Cancer Staging** Liver – Post-Ablation Liver – Pre-Ablation

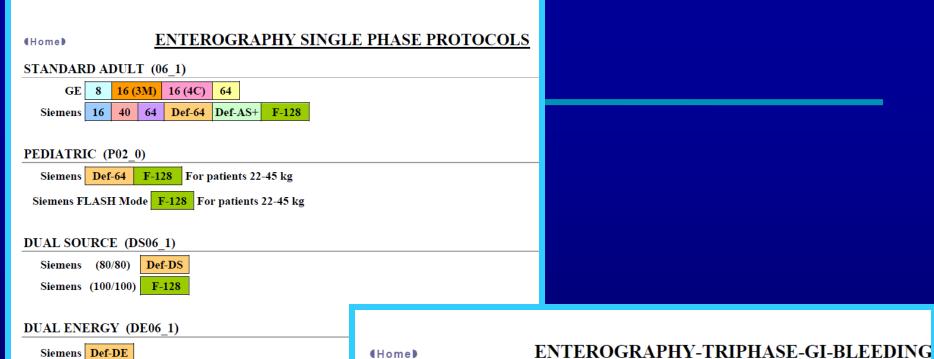
Liver – Volumetric Pre hepatic

Pancreas – Acute Pancreatitis Pancreas – Bi-Phase Pancreas – Bi-Phase w/ 3D Pancreatogram Pancreas – Tri-Phase for Islet Cell Pancreas – Single Phase for Follow Up Prostate – Seed (Pre and Post Implant) Prostate - Seed (Placement) CTU/CTA - Renal Donor

(Home)

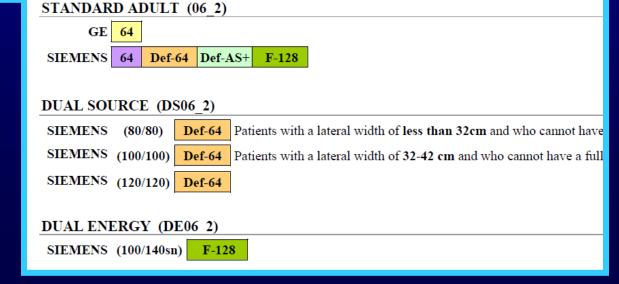
COMPUTED TOMOGRAPHY

 $e\,P\,ro\,to\,c\,o\,l\,\,\,\textbf{S}\,\textbf{y}\,\textbf{s}\,t\,e\,\textbf{m}$


ABDOMINAL PROTOCOLS	ABDOMINAL PROTOCOLS	ABDOMINAL
Abdomen & Pelvis – Routine	Kidney – Triphase – Renal Mass, Pre & Initial Post Ablation, and Partial	Pancreas – Acute
Adrenals – Targeted/Thin	Nephrectomy Kidney Biphase – FU RCC Radical	Pancreas – Bi-Ph Pancreas – Bi-Pha
Colonography – Routine & Failed Colonoscopy	Nephrectomy, 2 nd Post Ablation, and Partial Nephrectomy	Pancreas – Tri-Pl Pancreas – Singl
Colonography – w/ Contrast for Colorectal Lesion	Kidney – (CTA and Venous) Pre Op Vascular Mapping	Prostate – Seed
Cystogram	Kidney – Renal Stone	Prostate – Seed
Enteroclysis – with Neutral Enteric Contrast	Kidney – Renal Stone Composition (DE) Kidney – Renal Stone, Low Dose Kidney – Renal Stone Quantification	CTU/CTA - Rena CTU – Type I CTU – Type II
Enteroclysis – with Positive Enteric Contrast	Liver – Bi-Phase	CTU – Type III
Enterography (Single Phase)	Liver – Cholangiogram (Siemens)	CTU – Type IV
Enterography LD (Single Phase)	Liver – Tri-Phase for Cirrhosis, HCC, and Hepatoma	CTU – Type V
Enterography (Bi-Phase) – For Mesenteric Ischemia	Liver – HHT	
Enterography (Tri-Phase) – For Gl	Liver – Living Donor (Pre-Op) (Siemens)	
Bleeding	Liver – Living Donor (Post-Op) (Siemens)	
Esophageal Cancer Staging	Liver – Post-Ablation	
	Liver – Pre-Ablation	

Liver – Volumetric Pre hepatic

L PROTOCOLS te Pancreatitis hase hase w/ 3D Pancreatogram Phase for Islet Cell le Phase for Follow Up (Pre and Post Implant) d (Placement) al Donor


Technology Assessment Institute: Summit on CT Dose

(Home)

Scheduling

Siemens Def-DE

Technology Assessment Institute: Summit on CT Dose

(Home)

ENTEROGRAPHY SINGLE PHASE

(With out Blood loss)

GENERAL: Indications include, but are not limited to, Crohn's and Sprue.

Patients will be arriving 75 min. before their appointment time.

CONTRAST: Oral.: IV must be in place BEFORE the patient is given oral contrast. Nurse will give the following oral contrast to

the patient.

_						
	Routine Patient	ER Patient				
	450mL Volumen, 60 min prior to CT	1.8-2.0 liters of water over 30min.				
	450mL Volumen, 45 min prior to CT	Scan the patient 75min after the start				
	450 mL Volumen, 30 min prior to CT	of drinking water.				
	500 mL or 2 glasses of water, 15 min prior to CT					

IV: Use weight-based chart. Standard is 150ml Omnipaque 300 at 4cc/sec.

For large patients consult with radiologist regarding increasing contrast dosage.

Consult with radiologist regarding use of Reglan. Good coordination is critical for this timed study.

TOPOGRAM: PA, 512. STOP SCAN when through pelvis.

INFORM THE RADIOLOGIST IF ANY RESIDUAL BARIUM ON THE SCOUT/TOPOGRAM.

IF PATIENTS ARE: <45CM please use 2 mm x 1 mm slice thickness and increment.

IF PATIENTS ARE: >45 CM please use 3x2 slice thickness and Increment.

If B43 is not available please use the B40 kernel.

ENTEROGRAPHY: Scan from top of liver through Perineum. Do in one breath-hold (patient can breathe out slowly if necessary).

SIEMENS	Sens-16	Sens-40	Sens-64	Def-64	Def-AS+	F-128
Scan Type	Spiral	Spiral	Spiral	Spiral	Spiral	Spiral
Rotation Time (s)	0.5	0.5	0.5	0.5	0.5	0.5
Collimation	16 x 0.75	40 x 0.6	64 x 0.6	64 x 0.6	128 x 0.6	128 x 0.6
Pitch	0.7	0.6	0.8	0.8	1	1
Feed (mm/rot)	12	7.2	15.3	15.3	15.3	15.3
kVp	120	120	120	120	120	120
Quality ref mAs	240	200	240	240	240	240
CARE Dose 4D	ON	ON	ON	ON	ON	ON
API	inspiration	inspiration	inspiration	inspiration	inspiration	inspiration
Prep Delay (s)	50	50	50	50	50	50
Min. Retro (mm)	0.75	0.6	0.6	0.6	0.6	0.6
CTDI (mGy)		21.72	18	18	18	16.19
Base Protocol	Abd Routine					

Daily and ongoing commitment

Requires Planning by Integrated Team MD's, PhD's, RT's, RN's

"I know it when I see it."

Justice Potter Stewart U.S. Supreme Court

- Often graded on a 5 point scale
 - Definitions vary
 - Reproducibility often "good"
- Sometimes accompanied by
 - Other subjective scales such as
 - Artifact scores
 - Diagnostic confidence scores
 - Subjective Sharpness, Conspicuity, Noise ± Noise texture
 - Objective measures
 - Noise & contrast measurements
 - Gradient sharpness

European Guidelines on Quality Criteria for CT*

- Visuali
- Visually vessels
- Acquisithickne
- Subject

```
1= too little noise
```

2 = just right, optimum noise

3 = too much noise affecting

interpretation

small dges)

ce

ons'

European Guidelines on Quality Criteria for CT*

- Visualization of critical structures
- Visually sharp reproduction of structures (small vessels and lymph nodes, vascular/organ edges)
- Acquisition: CTDI_{vol} 35 mGy; nominal slice thickness 7 10 mm; 3 5 mm "small lesions"
- Subjective Noise**: the 3 bears
- Diagnostic Confidence**: 4-point scale

European Guidelines on Quality Criteria for CT*

- Great start
- Weaknesses
 - Too forgiving
 - Objective measures of sharpness, noise texture, low contrast conspicuity
 - Subjective measures of noise texture & conspicuity
 - Common image datasets
- Similar AAPM guidelines would be a boon to development, evaluation and validation of noise reduction technologies **http://www.drs.dk/guidelines/ct/quality/htmlindex.htm

 - ** Prakash, Kalra et al. Invest Radiol 2010; 45: 202–210

Getting a "Good Exam"

Example Patient Profile

28 yo with Peutz-Jehgers

Looking for large/dysplastic small
bowel polyps

Getting a "Good Exam"

Example Patient Profile

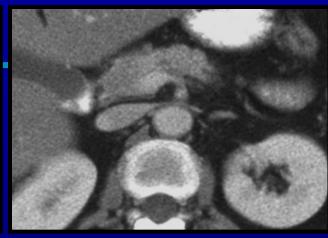
- Small bowel "filling defect"
- Enhancement only important if IV contrast
- Bowel distention important
- Young patient likely to undergo multiple exams

- CT enteroclysis > CT enterography
- Positive oral contrast
- Minimal collimation < 1 mm, coronal recons; 2 mm axial slices
- Half-standard tube current

Conclusions

- CT imaging benefits patients
- Net benefit affected by
 - -Patient risk, appropriateness
 - Optimization of CT technique
- Benefit maximized by individual consideration
 - Protocol development incorporating CT acquisition, pt prep, visualization
 - Continuing commitment

Suggested readings


- ACR Appropriateness Criteria
 - http://www.acr.org/secondarymainmenucategories/quality_safety/app_criteria.aspx
- European Guidelines on Quality Criteria for CT
 - http://www.drs.dk/guidelines/ct/quality/Preamble1.htm
- ACR White Paper on Radiation Dose in Medicine
 - Amis ES et al. JACR 2007; 4: 272 284
- In Defense of Body CT
 - McCollough CH et al. AJR 2009; 193(1):28-39.

13 months prior Karasawa et al. Radiology 1983; 489 - 493

Led to diagnosis

Careful radiologist review improves benefit

Careful radiologist review improves benefit

Enteroclysis – with Neutral Enteric Contrast

Enteroclysis – with Positive Enteric Contrast

Enterography (Single Phase)

Enterography LD (Single Phase)

Enterography (Bi-Phase) – For Mesenteric Ischemia

Enterography (Tri-Phase) – For GI Bleeding Low-grade obstruction

Polyposis, obstruction

Crohn's, sprue, diarrhea

Ischemia

Occult GI blood loss