Image Fusion in Nuclear Medicine
PET/CT J. A. Patton, Ph.D.

Image Fusion in Nuclear Medicine
PET/CT
AAPM 2001
Continuing Education

James A. Patton, Ph.D.
Vanderbilt University Medical Center
Nashville, Tennessee

Functional Imaging with Radiopharmaceuticals
• Conventional Nuclear Medicine
 – Bone Scans
 – Lung Scans
 – Cardiac Evaluations
 – Tumor and Infection Imaging
• Positron Emission Tomography (PET)
 – Brain Metabolism
 – Cardiac Metabolism and Ischemia
 – Tumor Metabolism

Fluorodeoxyglucose (FDG)
• A very special radiopharmaceutical
• Labeled with F-18
 – Positron Emitter (511 keV photons)
• Glucose analog
 – Excellent metabolic imaging agent

HCFA Approval for 18FDG
• 1998
 – Solitary pulmonary nodules
 – Staging of non-small cell lung cancer
• 1999
 – Recurrent colorectal cancer
 – Lymphoma
 – Metastatic melanoma
• 2000
 – Non-small cell lung cancer
 – Colorectal cancer
 – Lymphoma
 – Melanoma
 – Head and neck cancer
 – Bladder cancer
 – Esophageal cancer
 – Myocardial viability
 – (Therapy monitoring excluded)
Image Fusion in Nuclear Medicine

PET/CT J. A. Patton, Ph.D.

Annihilation Radiation

PET Scanner

Detectors

Coincidence Circuits

Signal Electronics

Display

PET Scanner

• 18 rings of detectors
• 35 imaging planes
• 15 cm axial field-of-view

Dedicated PET Scanner

PET scans are acquired as a series of transverse slices with a spatial resolution of approximately 5 mm. Each slice is 7-8 mm thick.

Brain Tumor

MRI

18FDG PET

15 nanosecond timing window

Transverse Slices

3-D Volume

Coronal
Whole Body FDG PET
No Attenuation Correction
Images are created by acquiring data from multiple bed positions.

Transmission Scan Emission Scan w/o AC Emission Scan with AC

Problems with Dedicated PET Scanners
- Expensive to purchase
- Expensive to service
- Can only perform PET procedures
- Reimbursement has been a problem (but is now improving)

Hybrid Cameras
- Multi-Head Scintillation Camera
- Routine nuclear medicine procedures
- Collimated high energy imaging
- Coincidence imaging (PET)

Dual-Head Scintillation Camera
Image Fusion in Nuclear Medicine

PET/CT J. A. Patton, Ph.D.

Coincidence Counting with a Dual-Head Scintillation Camera

- Head A
- Head B
- Coincidence Circuit
- A(x1,y1), B(x1,y1)

Metastatic Lung Cancer

Without Attenuation Correction

- Transverse
- Coronal
- Sagittal

Attenuation Correction

- Generally performed with a transmission scan obtained using a radioactive source as in PET scanning.

Dilemma in Nuclear Medicine

- Referring physicians ask “You have identified an area of increased uptake. Where is the abnormality located?”
- Nuclear medicine images must then be compared with images from CT or MRI.
 - Physiology - domain of nuclear medicine
 - Anatomy - domain of CT and MRI

Image Fusion

- Molecular Function + Anatomical Detail (Nuclear Medicine) (CT or MRI)

- Functional and Anatomical Imaging

Overlay Images for Comparison
Image Fusion in Nuclear Medicine
PET/CT J. A. Patton, Ph.D.

Traditional Methods
• Software Registration/Fusion
 – Rigid Body Transformations
 • Head
 – Non-rigid Body Transformations
 • Body

CT/MRI Scan

Emission Scan

Fused Image

Mathematical Transformation

Traditional Methods

Rigid Body Transformations
PET → MRI

Input Images
Registered Images

Stereotactic Head Frame

GE Millennium with “Hawkeye”

CT Acquisition
10 mm slice
13.6 sec/slice
40 slices

X-Ray Tube
140 kVp max.
2.5 mA max.

Slip ring gantry

Problems
• Images are acquired:
 – With different modalities
 – With different spatial resolutions
 – At different times
 – With patient in different positions
 – With different pixel sizes
 – With different array sizes
• And organs move
 – Cardiac/Respiratory/GI
Transmission Maps for Attenuation Correction and Image Fusion

Transverse | Coronal | Sagittal

Attenuation maps are displayed in Hounsfield Units and measured attenuation coefficients are scaled to 511 keV for attenuation correction.

Functional Anatomical Mapping

Testicular Cancer
Elevated tumor markers
18FDG

Metastatic Liver Cancer

SPECT of Chest with 99mTc Sestamibi in Patient with Parathyroid Adenoma
Results

- In a limited series of patients, image fusion provided added clinical value in 35% of the studies.

Hybrid Camera/CT

- Advantages
 - Relatively low cost
 - Multiple functions
- Disadvantages
 - Lesion detectibility problems for lesions < 1.5 cm
 - CT images are not diagnostic CT quality
PET/CT

- **Advantages**
 - Improved lesion detectibility
 - High quality anatomical information
 - Increased speed → Improved throughput
 - High quality fusion images
- **Disadvantage**
 - Cost

Image Fusion Applications

- Radiation therapy treatment planning
 - Conformal Therapy uses multi-leaf collimators to shape the radiation beam
 - Intensity Modulated Radiation Therapy (IMRT) permits the altering of the intensity of the radiation beam
- Use fused images as input for therapy treatment planning
 - to increase accuracy of radiation field mapping for therapy
 - Evaluate response to therapy

Advantage of Nuclear Medicine

Nuclear medicine provides information on regional biological activity that anatomical images alone cannot provide. This is useful for treatment planning and monitoring therapeutic response.

Plan Variation

- CT Isocenter
- Nuclear Medicine Isocenter

18FDG Lung Cancer
Image Fusion in Nuclear Medicine

PET/CT J. A. Patton, Ph.D.

18FDG Lung Cancer
Coronal View

18FDG Lung Cancer
Sagittal View

Tumor at Base of Tongue

Varian See and Treat™ Cancer Care
Data input from GE VG with Hawkeye

Varian Helios IMRT Treatment Plan
Using co-registered VG Coincidence and
Hawkeye CT data sets

Acceptance Testing and Q.A.
- Perform routine CT procedures
- Perform routine PET/Camera procedures
- Verify accuracy of registration
 - Phantom measurements
 - Remember data are three dimensional
 - Watch for flexing of imaging table

Varian SomaVision treatment planning workstation

Varian SomaVision treatment planning workstation
Conclusions

- Image fusion appears to be a valuable tool to:
- Precisely locate and identify lesions
- Refine radiation therapy treatment plans
- Follow course/effects of therapy