TLD and Monte Carlo Techniques for Reference-Quality Brachytherapy Dosimetry AAPM Summer School 23 June 2009

Jeffrey F. Williamson, Ph.D. Virginia Commonwealth University

Mark R. Rivard, Ph.D.

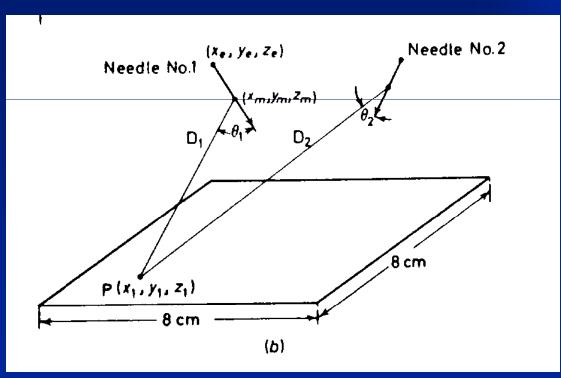
Tufts-New England Medical Center

Virginia Commonwealth University

Learning Objectives

- To review the requirements and challenges of quantitative brachytherapy dosimetry
 - Detector selection
 - Roles of experimental and computational dosimetry
- To review the formalism, techniques, and associated uncertainties of
 - current TLD dosimetry practices
 - Current Monte Carlo simulation dose-estimation practices
- To review emerging developments
 - Improved energy-response corrections for TLD-100
 - New detector systems
 - Model-based dose-calculation algorithms

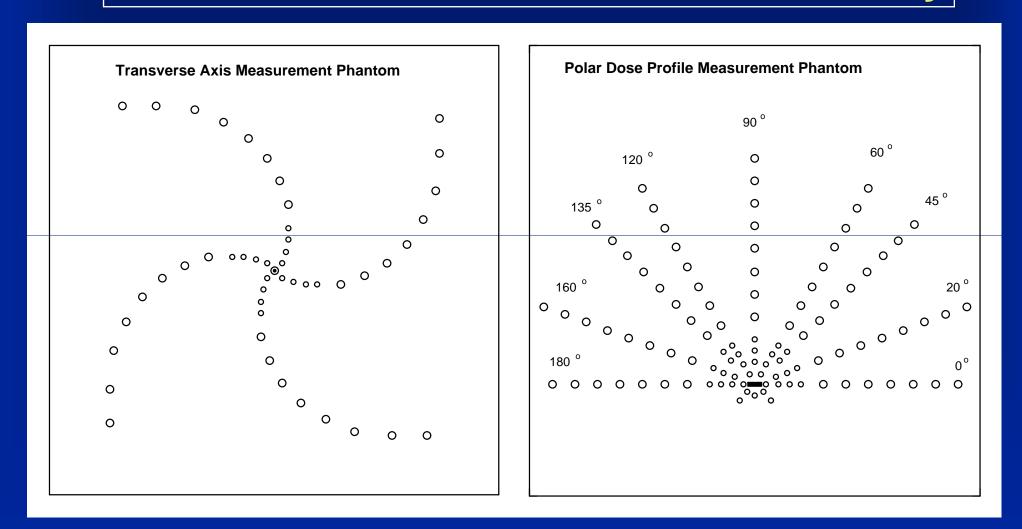

Potential COI Disclosures


- Williamson
 - Research grantssupported by Varianand Philips
- Rivard
 - Research grantssupported by Nucletron,Varian, and IsoRay

What is "Quantitative Dosimetry?"

- Williamson's definition: absorbed dose estimation method providing
 - Accurate representation of well-defined physical quality
 - Rigorous uncertainty analysis ⇒ <10% uncertainty 0.5 to
 5 cm in liquid water
 - Traceable to NIST primary standards (S_{K,N99})
- Applications
 - Single-source dose-rate arrays for TG-43 parameter determination ("Reference quality" dose <u>distributions</u>)
 - Direct treatment planning
 - Validating semi-empirical algorithms

Single-Source Dose Distributions Superposition Model

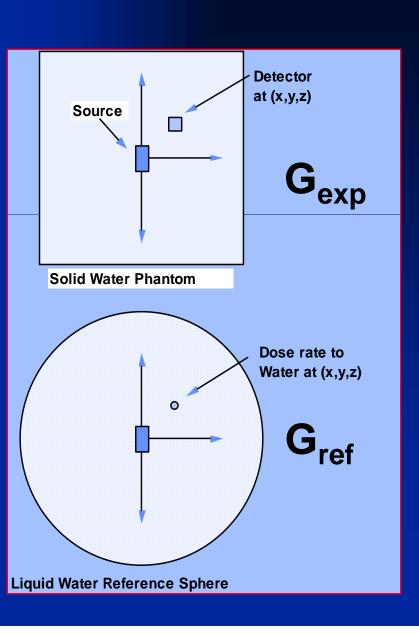

Single-source dose distribution = Dosimetry

Superposition of multiple source doses = Treatment Planning

Criteria for experimental dosimeters

- Dosimetric environment
 - Large Dose Gradients
 - Wide Range of Dose Rates
 - Low Photon Energies
- Signal stability and reproducibility
 - Spatially and temporally constant Sensitivity (signal/dose)
 - Free of fading, dose-rate effects
- Small size, high sensitivity, large dynamic range
 - Small size: avoid averaging dose gradients
 - Large size: Good signal at low doses
- ±20 μm positioning accuracy needed for 2% accuracy
- Support measurements at many points

Solid Water Phantoms for TLD Dosimetry



100-200 μm positional accuracy achievable

TLD Detectors

- Use TLD-100 LiF extruded ribbons ('chips')
 - 1 x 1 x 1 mm³ at distances < 2 cm
 - 3 x 3 x 0.9 mm³ at distances \geq 2 cm
- Use RMI 453 Machined Solid Water Phantom
 - Composition (CaCO₃ + organic foam) not stable
 - Either perform chemical assay or use high purity PMMA
- Annealing protocol
 - 1 hour 400° C followed by 24 hours of 80° C pre-irradiation OR
 - 1 hour 400° C pre-irradiation followed by 10 minutes at 100° C Post-irradiation

Brachytherapy Dosimetry

- Given: M(r) = dosimeter (TLD or Diode) reading in geometry G_{exp}
- Desired: $(D_{med}(r)/S_K)$ = absorbed dose rate to water in reference geometry, G_{ref}
- Many Corrections
 - Detector sensitivity
 - Phantom vs reference geometry
 - Radiation field Perturbation
 - Detector response artifacts

Experimental Dose Measurement-I

$$\begin{bmatrix} \dot{D}_{med}(r) \\ S_{K} \end{bmatrix} = \frac{M \cdot k_{I}(M) \cdot g(\Delta T) \cdot p_{phant}(r)}{S_{K} \cdot S_{AD}(M_{0}) \cdot S_{AD}^{rel}(r)}$$

$$\frac{M(r) \cdot k_{I}(M \rightarrow M_{0}) \cdot g(\Delta T) \cdot p_{phant}(Q_{exp}, G_{exp} \rightarrow Q_{ref}, G_{ref}; r)}{S_{K} \cdot S_{AD}(M_{0}, Q_{0}, G_{0}) \cdot S_{AD}^{rel}(Q_{0}, G_{0} \rightarrow Q_{exp}, G_{exp}, r)}$$

- M = reading at position r in geometry G_{exp} and spectrum Q_{exp}
- S_K = Measured Air-Kerma Strength
- $g(T) = decay correction over integration interval, <math>\Delta T$
- K_I(M) = linearity correction relative to reference level, M₀
- $S_{AD} = M_0/D_{med0} = absorbed dose sensitivity in calibration beam with geometry <math>G_0$ and spectrum, Q_0

Experimental Dose Measurement-II

$$\begin{bmatrix} \dot{\mathbf{D}}_{\text{med}}(\mathbf{r}) \\ \mathbf{S}_{\text{K}} \end{bmatrix} = \frac{\mathbf{M} \cdot \mathbf{k}_{\text{I}}(\mathbf{M}) \cdot \mathbf{g}(\Delta \mathbf{T}) \cdot \mathbf{p}_{\text{phant}}(\mathbf{r})}{\mathbf{S}_{\text{K}} \cdot \mathbf{S}_{\text{AD}}(\mathbf{M}_{0}) \cdot \mathbf{S}_{\text{AD}}^{\text{rel}}(\mathbf{r})}$$

 Relative absorbed dose sensitivity: corrects for impact of G₀/Q₀ vs. G_{exp}/Q_{exp} differences on dosimeter response

$$S_{AD}^{rel}(Q_0, G_0 \to Q_{exp}, G_{exp}, r) = \frac{S_{AD,wat}(r, M_0, Q_{exp}, G_{exp})}{S_{AD,med_0}(M_0, Q_0, G_0)}$$

Phantom correction factor: impact of G_{exp}/Q_{exp} vs. G_{ref}/Q_{ref} differences on dosimeter response

$$p_{\text{phant,wat}}(Q_{\text{exp}}, G_{\text{exp}} \rightarrow Q_{\text{ref}}, G_{\text{ref}}; r) = \frac{D_{\text{wat}}(r, Q_{\text{ref}}, G_{\text{ref}})}{D_{\text{wat}}(r, Q_{\text{exp}}, G_{\text{exp}})}$$

TLD readings

$$M(r) = 1/n \sum_{i=1}^{n} \frac{(TL_i - TL_{bkgd})}{S_i}$$

- TL_i is Measured Response of i-th detector at r
- S_i is relative sensitivity of i-th detector derived from reading TLDs exposed to uniform doses
- TG-43 recommends n = 5-15

Relative Energy Response

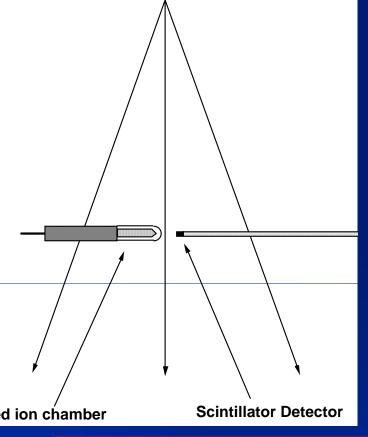
$$\begin{split} \textbf{E}(\textbf{Q}_{0},\textbf{G}_{0} \rightarrow \textbf{Q}_{\text{ref}},\textbf{G}_{\text{ref}},\textbf{r};\textbf{G}_{\text{exp}}) &= \frac{\textbf{S}_{\text{AD}}^{\text{rel}}(\textbf{Q}_{0},\textbf{G}_{0} \rightarrow \textbf{Q}_{\text{exp}},\textbf{G}_{\text{exp}},\textbf{r})}{\textbf{p}_{\text{phant,wat}}(\textbf{Q}_{\text{exp}},\textbf{G}_{\text{exp}} \rightarrow \textbf{Q}_{\text{ref}},\textbf{G}_{\text{ref}};\textbf{r})} \\ &= \frac{\textbf{k}_{\text{bq}}^{\text{rel}}(\textbf{Q}_{0} \rightarrow \textbf{Q}_{\text{exp}};\textbf{M}_{0}) \cdot \textbf{f}^{\text{rel}}(\textbf{Q}_{0},\textbf{G}_{0} \rightarrow \textbf{Q}_{\text{exp}},\textbf{G}_{\text{exp}},\textbf{r})}{\textbf{p}_{\text{phant}}(\textbf{Q}_{\text{exp}},\textbf{G}_{\text{exp}} \rightarrow \textbf{Q}_{\text{ref}},\textbf{G}_{\text{ref}};\textbf{r})} \end{split}$$

Absorbed dose energy dependence

$$\mathbf{f}^{\mathsf{rel}}(\mathbf{Q}_{0},\mathbf{G}_{0} \to \mathbf{Q}_{\mathsf{exp}},\mathbf{G}_{\mathsf{exp}},\mathbf{r}) \equiv \frac{\mathbf{f}(\mathbf{r},\mathbf{Q}_{0},\mathbf{G}_{0})}{\mathbf{f}(\mathbf{r},\mathbf{Q}_{\mathsf{exp}},\mathbf{G}_{\mathsf{exp}})} = \frac{\left(\overline{\mathbf{D}}_{\mathsf{det}}/\mathbf{D}_{\mathsf{wat}}\right)(\mathbf{r},\mathbf{Q}_{\mathsf{exp}},\mathbf{G}_{\mathsf{exp}})}{\left(\overline{\mathbf{D}}_{\mathsf{det}}/\mathbf{D}_{\mathsf{med}_{0}}\right)(\mathbf{Q}_{0},\mathbf{G}_{0})}$$

Relative intrinsic energy dependence

$$\mathsf{k}_{\mathsf{bq}}^{\mathsf{rel}}(\mathsf{Q}_{\mathsf{0}} \to \mathsf{Q}_{\mathsf{exp}};\mathsf{M}_{\mathsf{0}}) \equiv \frac{\mathsf{k}_{\mathsf{bq}}(\mathsf{M}_{\mathsf{0}},\mathsf{Q}_{\mathsf{0}})}{\mathsf{k}_{\mathsf{bq}}(\mathsf{M}_{\mathsf{0}},\mathsf{Q}_{\mathsf{exp}})} = \frac{\left(\mathsf{M}_{\mathsf{0}}/\overline{\mathsf{D}}_{\mathsf{det}}\right)(\mathsf{r},\mathsf{Q}_{\mathsf{exp}},\mathsf{G}_{\mathsf{exp}})}{\left(\mathsf{M}_{\mathsf{0}}/\overline{\mathsf{D}}_{\mathsf{det}}\right)(\mathsf{Q}_{\mathsf{0}},\mathsf{G}_{\mathsf{0}})}$$

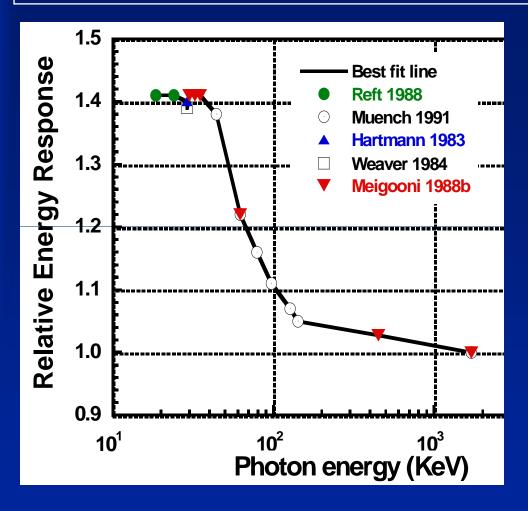

Estimation of Energy-Response Corrections

Theoretical Approximation

$$\begin{split} & E_{\text{Thy}}(\textbf{r};\textbf{G}_{\text{exp}}) \approx \frac{\textbf{f}^{\text{rel}}(\textbf{Q}_{0},\textbf{G}_{0} \rightarrow \textbf{Q}_{\text{exp}},\textbf{G}_{\text{exp}},\textbf{r})}{\textbf{p}_{\text{phant}}(\textbf{Q}_{\text{exp}},\textbf{G}_{\text{exp}} \rightarrow \textbf{Q}_{\text{ref}},\textbf{G}_{\text{ref}};\textbf{r})} \\ & \textbf{assuming } \textbf{k}_{\text{bq}}^{\text{rel}}(\textbf{Q}_{0} \rightarrow \textbf{Q}_{\text{exp}};\textbf{M}_{0}) \approx 1 \end{split}$$

Direct measurement: x-ray beam with spectrum Q_{FS} ≈ Q_{exp}

$$\begin{split} \textbf{E}_{\text{meas}}(\textbf{r};\textbf{G}_{\text{exp}}) &= \frac{\textbf{S}_{\text{K,air}}(\textbf{M}_{0},\textbf{Q}_{\text{exp}},\textbf{G}_{\text{FS}})}{\textbf{S}_{\text{AD,med}_{0}}(\textbf{M}_{0},\textbf{Q}_{0},\textbf{G}_{0})} \\ &\times \frac{\left(\textbf{K}_{\text{air}}/\textbf{D}_{\text{wat}}\right)(\textbf{Q}_{\text{FS}},\textbf{G}_{\text{FS}})}{\textbf{p}_{\text{disp}}(\textbf{r},\textbf{G}_{\text{exp}}) \cdot \textbf{p}_{\text{VolAvg}}(\textbf{r},\textbf{G}_{\text{exp}}) \cdot \textbf{p}_{\text{phant,wat}}(\textbf{G}_{\text{exp}} \rightarrow \textbf{G}_{\text{ref}};\textbf{Q}_{\text{exp}},\textbf{r})} \end{split}$$

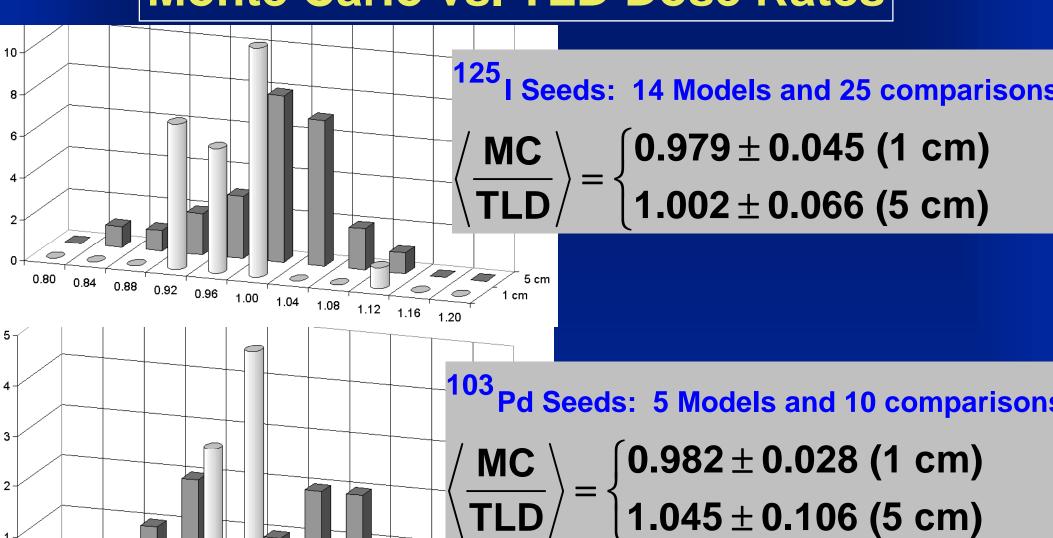


Compare detector to "matched" X-ray Beam calibration in Free-Air $Q_{FS} = 40-120 \ kVp$

$$\begin{aligned} \mathbf{S}_{\text{K,air}}\left(\mathbf{Q}_{\text{FS}}\right) &= \mathbf{M}\left(\mathbf{Q}_{\text{FS}}, \mathbf{G}_{\text{FS}}\right) / \mathbf{K}_{\text{air}}^{\text{FS}} \\ \mathbf{E}(\mathbf{r}) &= \left(\frac{\mathbf{S}_{\text{K,air}}\left(\mathbf{Q}_{\text{FS}}\right)}{\mathbf{S}_{\text{AD}}\left(\mathbf{Q}_{0}\right)}\right) \cdot \frac{\left(\overline{\mu_{\text{en}}}/\overline{\rho}\right)_{\text{wat}}^{\text{air}}\left(\mathbf{Q}_{\text{FS}}\right)}{\mathbf{p}_{\text{VolAvg}} \cdot \mathbf{p}_{\text{disp}}(\mathbf{r}) \cdot \mathbf{p}_{\text{disp}}} \end{aligned}$$

$$\begin{split} & p_{\text{disp}}(\textbf{G}_{\text{FS}} \rightarrow \textbf{G}_{\text{exp}}) = \frac{\textbf{D}_{\text{wat}} \text{ in medium}}{\textbf{K}_{\text{wat}}^{\text{FS}} \text{ in cavity}} \approx \textbf{0.97} \\ & p_{\text{VolAvg}}(\textbf{Q}_{\text{exp}}, \textbf{G}_{\text{exp}}) = \frac{\textbf{D}_{\text{wat}}(\textbf{r})}{\overline{\textbf{D}}_{\text{wat}}(\textbf{r})} = \frac{\textbf{D}_{\text{wat}}(\textbf{r}) \text{ at point } \textbf{r}}{\textbf{V}^{-1} \int_{\textbf{V}(\textbf{r})} \textbf{D}_{\text{wat}}(\textbf{r}') \text{dV'}} \bigg\} \in (\textbf{0.80} - \textbf{1.00}) \end{split}$$

Measured TLD-100 relative Energy Response

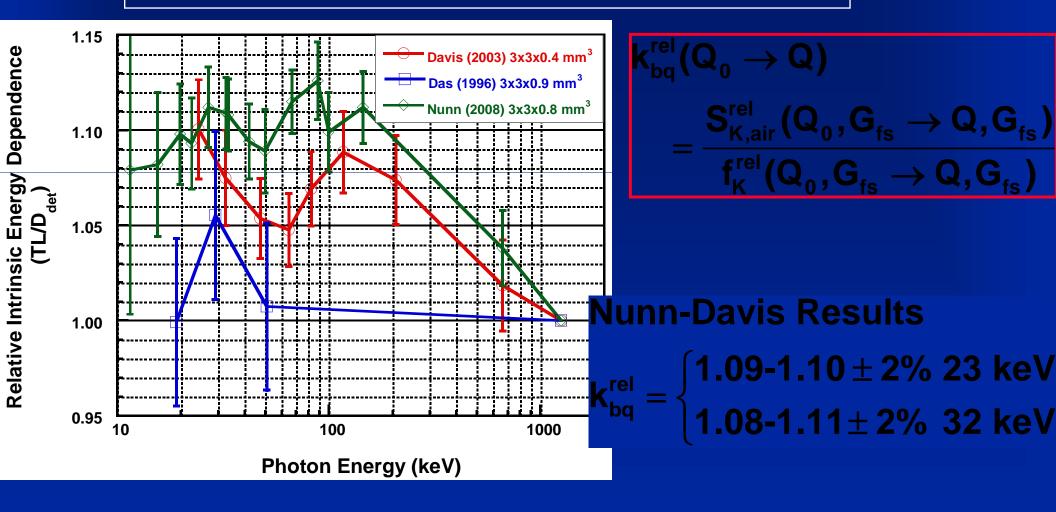

- $E_{thy}(1 \text{ cm}) = 1.42$
 - Dolan (2006) in water medium
 - -6711^{125}
- $E_{\text{meas}} = 1.39 1.44$ for ¹²⁵
 - 1980-1990 in-air measurements
- Conclusion:

$$E_{Thy} \approx E_{meas}$$

$$\Rightarrow k_{bq}^{rel} (4 \text{ MV} \rightarrow {}^{125}\text{I}) \approx 1$$

- Conventional choice: E =1.4 w/o regard to details
- 2004 TG-43 U1 has assigned 5% uncertainty to E

Monte Carlo vs. TLD Dose Rates


0.88 0.92 0.96

1.00 1.04

1.08

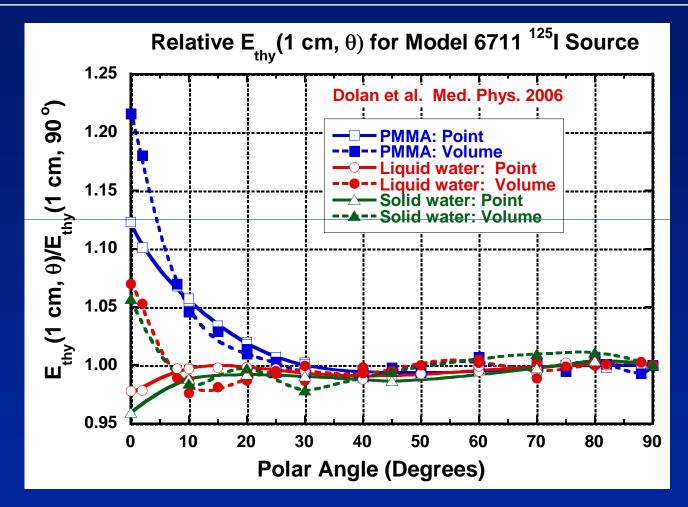
Modern Measurements: k_{bg} ≠ 1

Nunn 2008, Davis 2003, and Das 1995


Energy linearity of TLD is controversial

Impact of k^{rel} Revisions on MC-TLD Agreement

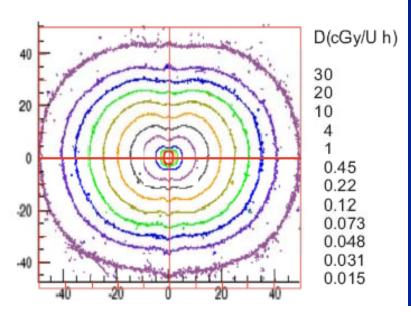
- Rivard comparisons of TLD and MC at 1 cm and 5 cm for ¹²⁵I and ¹⁰³Pd sources
- Revised $k_{rel} > 1.05$ will significantly worsen agreement


	Source	Distance	Monte Carlo/TLD dose rate				
			$K_{bq}^{rel} = 1.00$	$K_{bq}^{rel} = 1.05$	$K_{bq}^{rel} = 1.075$	$K_{bq}^{rel} = 1.10$	
	125	1 cm	0.979 ± 0.045	1.028	1.052	1.077	
		5 cm	1.002 ± 0.066	1.052	1.077	1.102	
	¹⁰³ Pd	1 cm	0.982 ± 0.028	1.031	1.056	1.080	
		5 cm	1.045 ± 0.106	1.097	1.123	1.150	

Absorbed Dose Energy Response Correction

- E_{thy} is not a constant
 - 4% variation with distance even in water
 - Displacement correction ≈ 4% for 1 mm mini-cubes
- Solid-to-Liquid Water correction: 4%-15% at 1-5 cm
 - 10-30% variations in SW [Ca] reported ⇒ 5%-20% dosimetric errors

Absorbed Dose Energy Response Correction

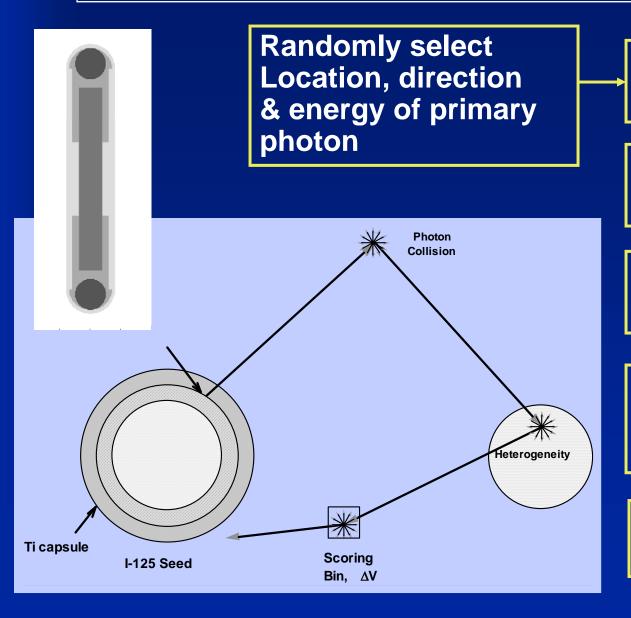

Up to 22% variation in E(r,θ) with polar angle

TLD uncertainties: Ď _{wat} (r)/S _κ for Model 6711 ¹²⁵ l in PMMA						
Component	1 cm distance		5 cm distance			
Component	%σ _{×,}	Туре	%σ _{x,}	Туре		
TLD reading statistics	1.3%	Α	2.2%	Α		
TLD calibration (including Linac calibration)	1.8%	A+B	1.8%	A+B		
$f^{rel}(Q_0 \rightarrow Q_{exp}, r)$ and $p_{phant}(G_{exp} \rightarrow G_{ref}, r)$	0.7%	В	1%	В		
Seed/TLD positioning (Δd = 100 μm)	1.2%	В	0.2%	В		
$\mathbf{k}_{\mathrm{bq}}^{\mathrm{rel}}(\mathbf{Q}_{0} \rightarrow \mathbf{Q}_{\mathrm{exp}})$	5%	В	5%	В		
NIST S _K + one local transfer	1%	В	1%	В		
Combined std. uncertainty ($k = 1$)	5.7%		5.9%			
Monte Carlo uncertainties: Mo	Monte Carlo uncertainties: Model 6711 seed in liquid water					
Distance	1 cm 0.2% 0.7% 1.1% 0.2% 1.3%		5 cm	10 cm		
Statistics			0.3%	0.7%		
Photon cross-sections			2.4%	4.1%		
Seed geometry			0.9%	0.8%		
Source energy spectrum			0.3%	0.5%		
Combined std. uncertainty (<i>k</i> =1)			2.6%	4.3%		

Other dosimetry systems

- Single element detectors
 - High sensitivity, small size, good SNR, and waterproof
 - Plastic scintillator
 - » Used as transfer/relative dosimeters for beta sources
 - » Large (30%) energy nonlinearity
 - Diode: underutilized in presenter's opinion
 - » Energy linearity well established
 - » Large E(d) variation for medium energy sources
 - » Established as relative dosimeter for low-energy
- 2D/3D dosimetry media
 - Radiochromic film and polymer gels
 - Improved positional accuracy and spatial resolution

Measured RCF dose (Film #2) 500 250 6 10 30 9060 15 30 250 500 Longitudinal to the seed (0.1 mm/pixel)


Radiochromic Film

- Le and Williamson 2006
 - MD-55-2 RCF with LDR ¹³⁷Cs source
 - -6 day exposure
 - Uncertainty (k = 1) < 3.4% for D>5 Gy,
 0.1 mm spatial resolution, doubleexposure technique
 - Agreement with MC ≈ 3%
- Chiu-Tsao 2008
 - EBT RCF with Model 3500 ¹²⁵l seed
 - -0.6 to 279 h exposures
 - Relative dose mapping (k=1) uncertainty ≈ 4% at 0.2 mm spatial resolution
 - Good agreement with TG-43

Summary: TLD phantom dosimetry

- 1-3 mm size ⇒ precision: 2-5% above 1 cGy
- Energy response corrections
 - Distance independent, excluding phantom corrections
 - Value of k_{bq} is controversial (<10%)
 - Highly approximate f_{rel} values are routinely used
- Widely-used SW phantom has uncertain composition
 - High-purity industrial plastics recommended
- Extensive benchmarking of TLD vs Monte Carlo
 - -2-10% agreement for Pd-103 and I-125 sources
 - -6%-10% absolute dose measurement uncertainty

Basic Discrete Event Monte Carlo Algorithm

select distance to next collision

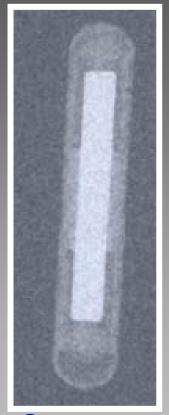
Select type of collision

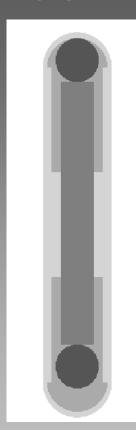
Select type of collision

Select Energy and angle of photon leaving collision

Score collision's dose contribution

Collisional Physics Requirements for Low-Energy Brachytherapy


- Only photon transport needed
 - Secondary CPE obtains (Dose ≈ Kerma)
 - Neutral-particle variance reduction techniques useful
- Comprehensive model of photon collisions
 - NIST EXCOM or EPDL97 Cross sections are essential!!
 - Coherent scattering and electron binding corrections
 - » Use molecular/condensed medium form factors
 - Characteristic x-ray emission from photo effect
- Options: MCNP, EGSnrc, VCU's PTRAN_CCG, GEANT, Penelope

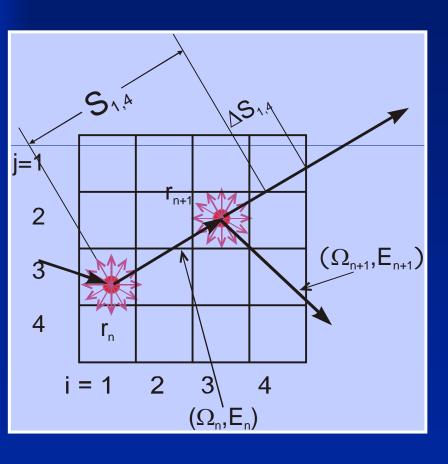


Geometric Model Validation

DraxImage I-125 Seed

Contact Radiograph

Final Model


Calculation of TG-43 Parameters by MCPT

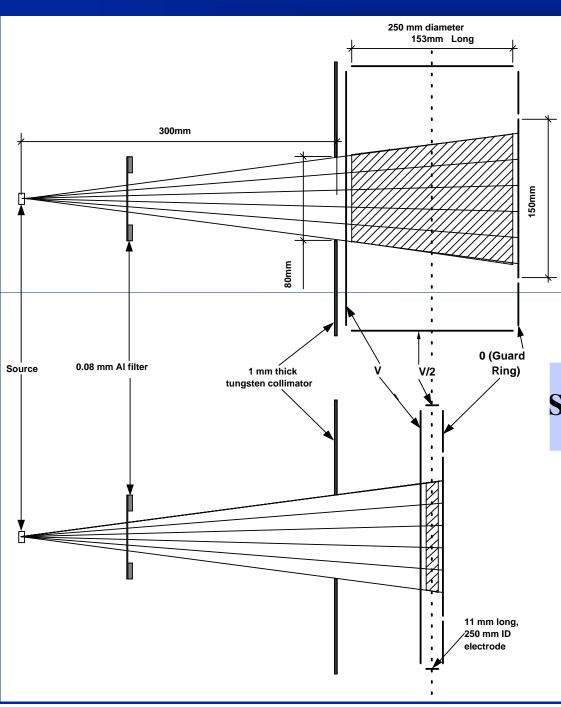
MCPT calculates per disintegration within source:

- Dose to medium, $\Delta D_{med}(r)$, near source in phantom geometry: usually 30 cm liquid water sphere
- Air-kerma strength, △S_K, in free-air geometry usually 5 m air sphere or detailed model of calibration vault

$$\begin{split} & \Lambda = \frac{\Delta D_{wat}(r=1\,cm,\theta=\pi/2)}{\Delta S_K} \\ & g(r) = \frac{\Delta D_{wat}(r,\pi/2) \cdot G(1\,cm,\pi/2)}{\Delta D_{wat}(1\,cm,\pi/2) \cdot G(r,\pi/2)} \end{split}$$

Analog and Tracklength Dose Estimation

Need cubic array of voxels:

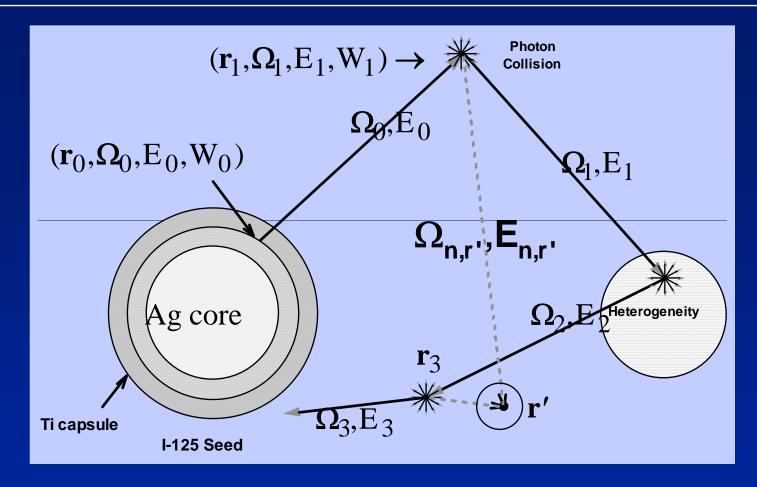

 $1x1x1 \text{ mm}^3$ to $2x2x2 \text{ mm}^3$

Analogue Estimator (EGS method)

$$D_{2,3}$$
 from $n+1 = \frac{\text{Energy in - Energy out}}{\text{voxel mass}}$

Expected Value Tracklength Estimator

$$D_{1,4}$$
 from $n \propto E_n \cdot \frac{\Delta s_{1,4}}{\text{voxel volume}} \cdot (\mu_{en}/\rho)$



Wide-angle Free Air Chamber

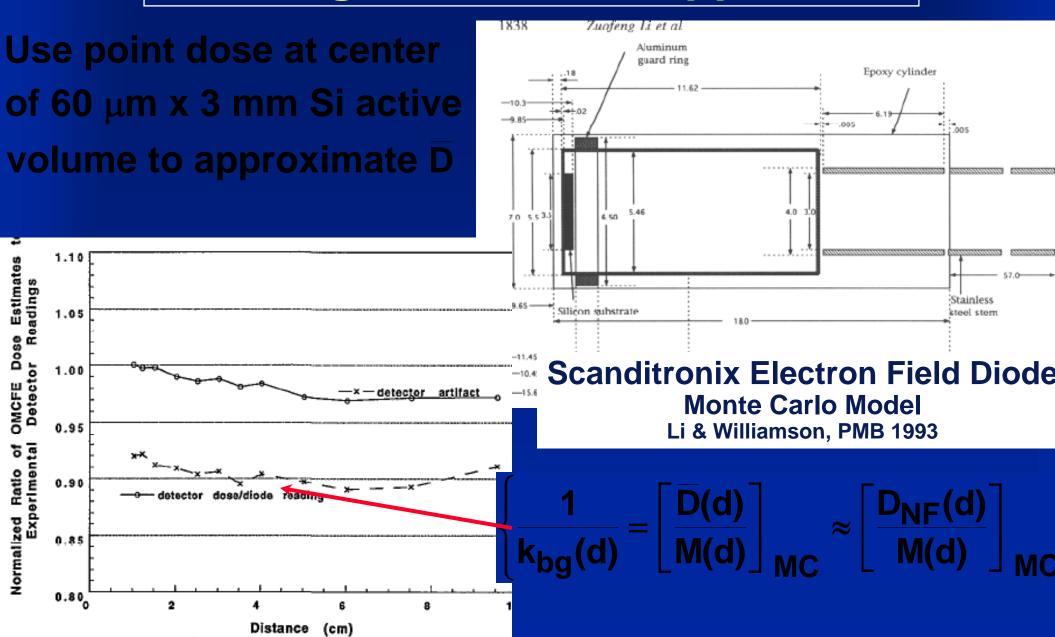
NIST Primary Standard interstitial sources photons < 50 keV

$$S_{K,99N} = \frac{(I_{153} - I_{11})d^2}{\rho_{air}(V_{153} - V_{11})}(W/e)\prod_{i} k_i$$

Kerma at a Point: Next Flight Estimator

$$\Delta D(r')$$
 from $n \propto p(\Omega_{n,r'}) \cdot E_{n,r'} \cdot (\mu_{en}/\rho) \cdot \frac{e^{-\mu \cdot |r| - r_{n} l}}{|r - r_{n}|^{2}}$

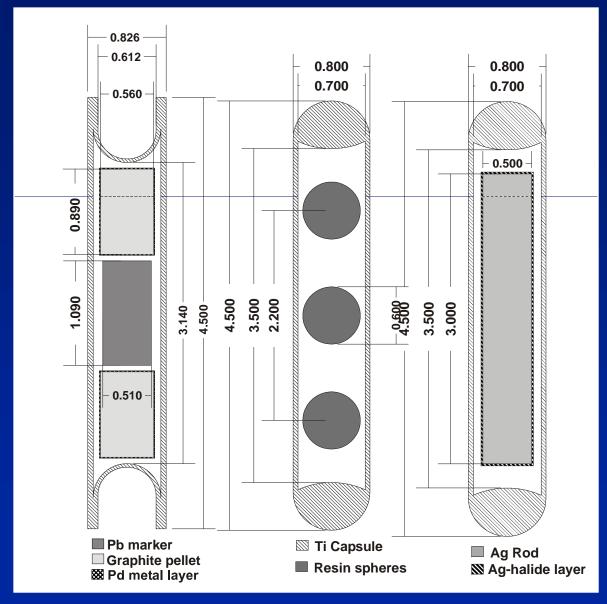
Calculation of ∆S_K Extrapolated Point-Kerma method


- Place sealed source model at center of large air sphere
- Calculate air-kerma/disintegration, ∆K_{air}(d), as function transverse axis distance, d
- Extrapolate to free-space geometry by curve fitting

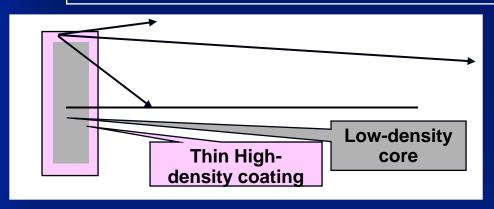
$$\Delta \dot{\mathbf{K}}_{air}(\mathbf{d}) \cdot \mathbf{d}^2 = \Delta \mathbf{S}_{\mathbf{K}} \cdot (1 + \alpha \mathbf{d}) \cdot \mathbf{e}^{-\mu \mathbf{d}}$$

Where ΔS_K and α are unknowns (1 + α d) - SPR accounts for scatter buildup

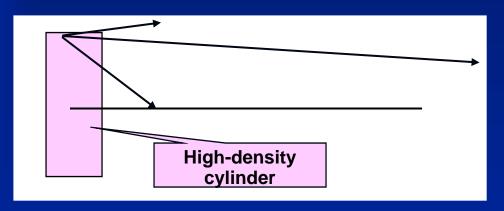
 μ = primary photon attenuation coefficient


Next-Flight Estimator Application

Monte Carlo quantities and estimators for typical seed study

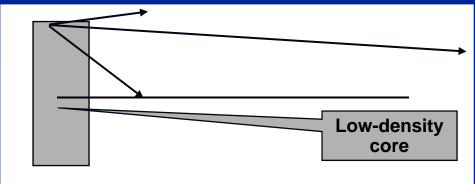

```
Next-flight estimator for all distances
Track-length estimator for RTP voxel grid
Track-length estimator when fluence varies over detector
Next-flight point dose estimator for TLD/diode detectors
 > 2 cm from source
Track length for WAFAC
Next-flight for transverse axis distribution
```

Models 200 (103Pd), 6702 (125I) and 6711 (125I) Seeds

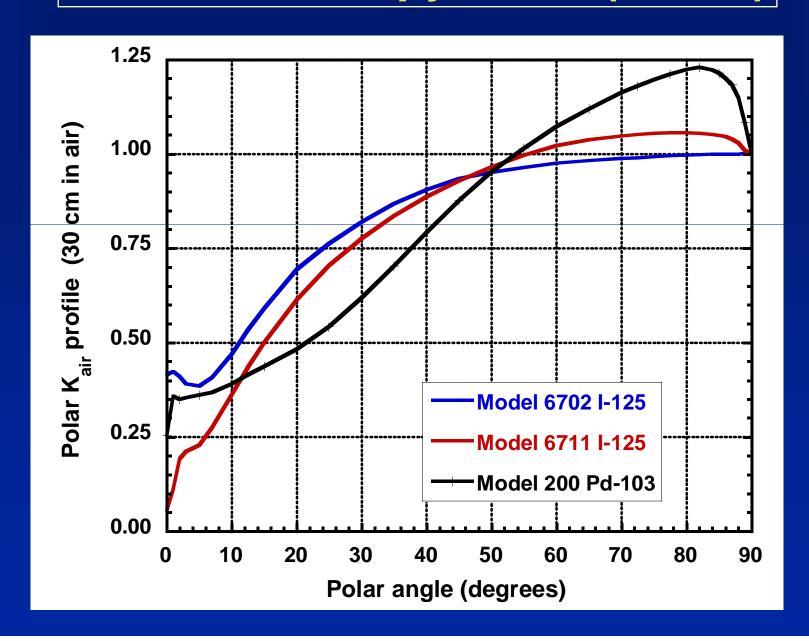


- Model 200
 - 103Pd distributed in thin (2-25 μm) Pd metal coating of right circular graphite cylinder
- Model 6702
 - 125 I distributed on surface of radio transparent resin spheres
- Model 6711
 - 125 I distributed in thin (≈3 μm) silver-halide coating of right circular Ag cylinder

Sharp corners and opaque coatings

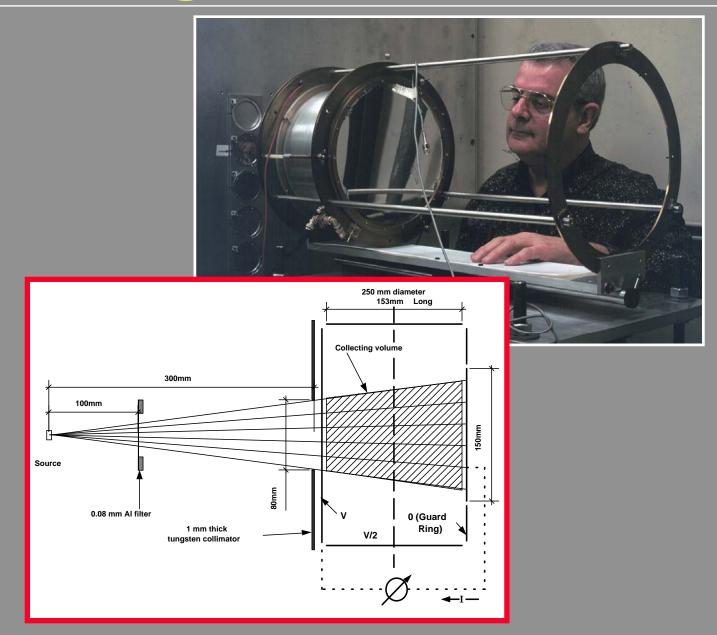

Near transverse-axis:
Anisotropic at long distances
Isotropic at short distances
Inverse square-law deviations

Anisotropic at long and short distances


Circular ends contribute at

$$\theta = \tan^{-1} \left[\frac{L}{2 \times d} \right] = \begin{cases} 8^{\circ} & d = 1 \text{ cm} \\ 0.3^{\circ} & d = 30 \text{ cm} \end{cases}$$

Isotropic at both long and short distances


Polar Anisotropy in Air (30 cm)

'WAFAC:' Wide Angle Free-Air Chamber

Rotating Seed Holder

WAFAC Simulation Method

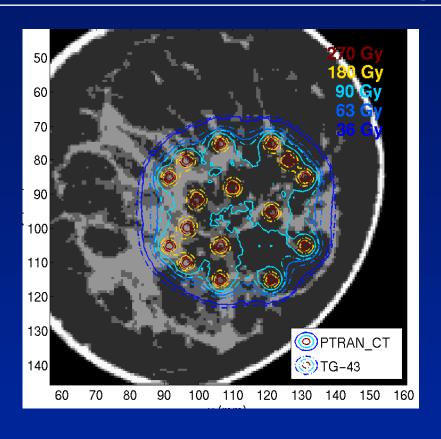
$$\Delta S_{K} = \frac{(\Delta E_{ab}^{153} - \Delta E_{ab}^{11}) \cdot d^{2}}{\rho_{air} \cdot (V_{153} - V_{11})} \cdot k_{inv} \cdot k_{att}$$

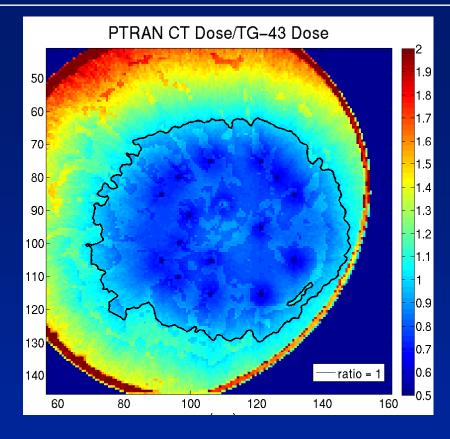
where ΔE_{ab}^{x} = Energy absorbed/disintegration in WAFAC volume of length x d = 38 cm = seed-to-WAFAC volume center

$$\mathbf{k_{att}} = \frac{(\Delta S_{\mathbf{K}})_{extr}}{\mathbf{k_{inv}} \cdot (\Delta \mathbf{K} \cdot \mathbf{d}^2)_{WFC}}$$
 for a point source =
$$\begin{cases} 1.025 & Pd-103 \\ 1.013 & I-125 \end{cases}$$

$$k_{inv} = inverse-square \ correction = \frac{\int \Phi(\ell) \cdot dA}{\Phi(d) \cdot A} = 1.0089$$

Pd-103 Dose-Rate Constants


	Investigator	$\Lambda_{\text{xxD,N99S}}$			
Source		TLD	MC Extrap.	MC WAFAC	
Point	Monroe 2002		0.683	0.683	
Model 200 (light)	Monroe 2002 Nath 2000	 0.684	0.797	0.691	
Model 200 (heavy)	Monroe 2002 ICWG 1989	 0.65	0.744	0.694	
NAS MED 3633	Li Wallace 1998	0.693 0.68	0.677		


TLD uncertainties: D _{wat} (r)/S _K for Model 6711 125 in PMMA							
Component	1 cm distance		5 cm distance				
Component	%σ _{x,}	Туре	%σ _{x,}	Туре			
TLD reading statistics	1.3%	Α	2.2%	Α			
TLD calibration (including Linac calibration)	1.8%	A+B	1.8%	A+B			
$f^{rel}(Q_0 \rightarrow Q_{exp}, r)$ and $p_{phant}(G_{exp} \rightarrow G_{ref}, r)$	0.7%	В	1%	В			
Seed/TLD positioning (Δd = 100 μm)	1.2%	В	0.2%	В			
$k^{rel}_bq(Q_0 o Q_exp)$	5%	В	5%	В			
NIST S _K + one local transfer	1%	В	1%	В			
Combined std. uncertainty ($k = 1$)	5.7%		5.9%				
Monte Carlo uncertainties: Mo	Monte Carlo uncertainties: Model 6711 seed in liquid water						
Distance	1 cm		5 cm	10 cm			
Statistics	0.2%		0.3%	0.7%			
Photon cross-sections		0.7%		4.1%			
Seed geometry	1.1%		0.9%	0.8%			
Source energy spectrum	energy spectrum 0.2%		0.3%	0.5%			
Combined std. uncertainty (<i>k</i> =1)	1.3%		2.6%	4.3%			

Adapted from Dolan et al. Med Phys 2006

Monte Carlo-based Treatment planning

Consolidating Dosimetry and treatment planning into a single process

- Permanent seed APBI: 70^{125} I seeds, $D_{90} = 115$ Gy
- 0.7 mm voxels, average SD = 1.2%, single-processor CPU time = 30 min

Monte Carlo vs TLD

- Measurement Pros and Cons
 - Large uncertainties and many artifacts
 - Tests conjunction of all a priori assumptions: geometry, detector response corrections, calibration etc
- Monte Carlo Pros and Cons
 - Artifact-free, low uncertainty, and unlimited spatial resolution
 - Garbage in-Garbage out
 - » Seed geometry errors
 - » Will not anticipate contaminant radionuclides etc., S_K errors
 - Does not model detector signal formation process
- Hence: TG-43 continues to require both measured and Monte Carlo single-seed dose distributions

Dosimetry: Conclusions

- Low energy brachytherapy: main catalyst for improving dosimetry and source standardization for 30 years
 - Single-source dose distributions have 5% uncertainty
 - Both MC and measurement have important roles
- Current Role
 - Monte Carlo: primary source of dosimetric data
 - » Soon: MC dosimetry and planning will be a single process
 - Measurement: Confirm Monte Carlo assumptions
- Major needs: more accurate and efficient dosemeasurement systems for low energy sources
 - Test batch-to-batch and/or source-to-source variations during manufacturing process