Kilovoltage X-Ray Dosimetry for Radiation Therapy

C.-M. Charlie Ma

Dept. of Radiation Oncology, FCCC, Philadelphia, PA

Clinical Dosimetry Measurements in Radiotherapy 2009 AAPM Summer School Colorado College, CO June 21-25, 2009

Outline

- Kilovoltage x-ray dosimetry- a review
- TG-61 formalism for kilovoltage x-ray dosimetry
- Clinical implementation of the TG-61 protocol
- Summary of TG-61 recommendations
- Uncertainty analysis

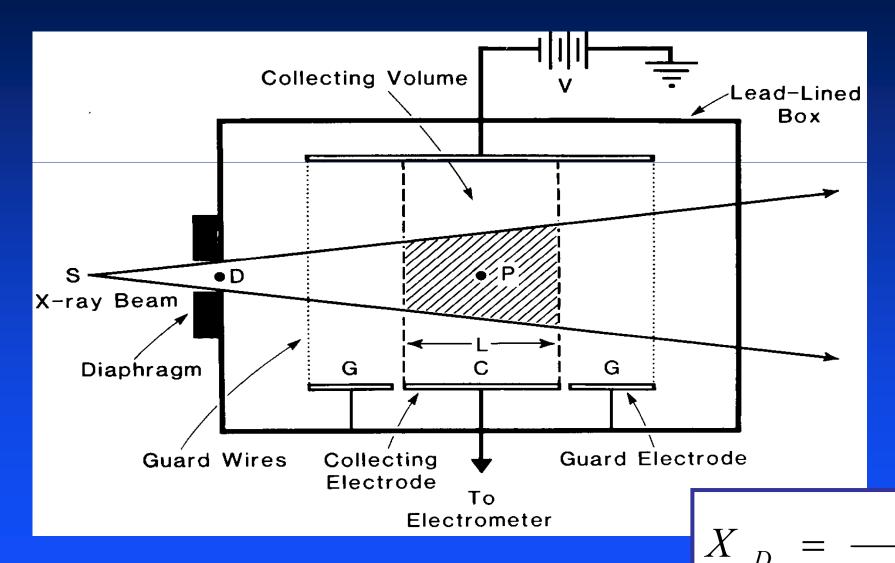
Therapax HF150 Superficial Unit By Pantak, Inc

A X-ray unit from Gulmay Medical Ltd

The physics of kV x-ray dosimetry

- Very short electron ranges (< 0.5 mm water)
- Large scatter contributions and SSD, field size, beam quality dependent
- Kerma = dose (also $K_{col} = K$ as negl. brem., <0.1%)
- Bragg-Gray cavity conditions very difficult to fulfill - even for air-filled ionization chambers
- Ionization chambers calibrated as "exposure meters" and used as "photon detectors"

Kilovoltage x-ray dosimetry- a review


- Kilovoltage x-ray dosimetry is the main theme in the first
 70 years following the discovery of x-rays
- The introduction of the roentgen in 1928 at Stockholm Congress of Radiology marked the beginning of precise physical measurement of radiation exposure (dose)
- The universally adopted instrument to measure exposure is the free air chamber ($\pm 1\%$ agreement between national labs in 1932)

Exposure, X

$$X = \frac{\mathrm{d}Q}{\mathrm{d}m} (\mathrm{kg/c})$$

where dQ is the absolute value of the total charge of the ions of one sign produced in (dry) air when all the electrons liberated by photons in air of mass dm are completely stopped in air

Measurement of Exposure

Free Air Chamber

Modern'' Dosimetry for Kilovoltage X-Ray

- ICRU Report 23 (1973) significant changes made 40-150 kV in-air method, >150 kV in-phantom
- NCRP Report 69 (1981) only protocol for N. Ame.
 10 kV and above, in-air method, no BSF given
- IAEA Report 277 (1987) significant changes made 10-100 kV in-air method, >100 kV in-phantom

Modern'' Dosimetry for Kilovoltage X-Ray

- IPEMB Code of Practice (1996) with three ranges Very low- (< 1mmAl) in-phantom, low- (1-8mmAl) in-air, medium-energy (>0.5mmCu) in-phantom
- NCS Code of Practice (1997) two energy ranges
 50 100 kV in-air method, 100 300 kV in-phantom
- IAEA Code of Practice (2000) new recommendations Absorbed dose based, consistent with other beams

Kilovoltage x-ray dosimetry

• For low-energy (40 - 150 kV, 8mm Al HVL) x-rays - the backscatter method

• For medium-energy (100 - 300 kV, 4mm Cu HVL) x-rays - the in-phantom Method

(except for NCRP Report 69)

AAPM TG-61 Report

(Med. Phys. 28 (6) 2001 868-893)

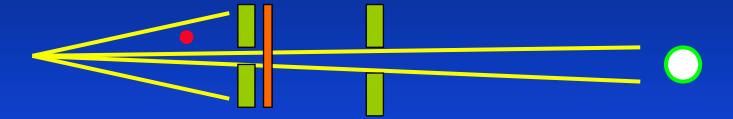
Charles Coffey
Chihray Liu
Ravi Nath
Jan Seuntjens

Larry DeWerd
Charlie Ma (chair)
Stephen Seltzer

What's New in AAPM TG-61?

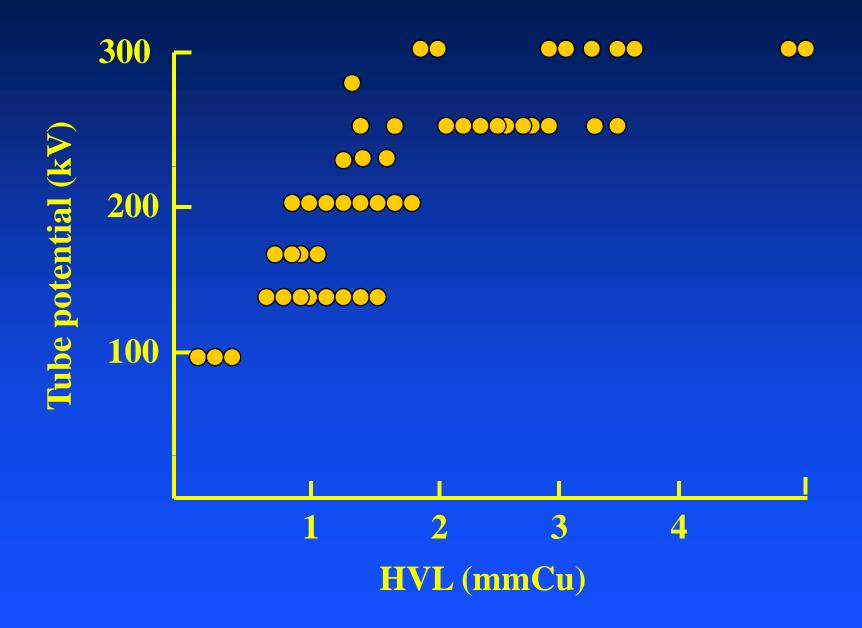
- Use both the in-air and in-phantom methods for tube potentials 100 300 kV
- More complete data (for water, tissue & bone)
- Recommendations for relative measurements
- Recommendations for QA and consistency check

Detectors for kV x-ray beams


 Air-filled ion chambers are recommended for absolute dose measurements

• Diode, film, diamond detectors for relative measurements

Beam quality specification


• Use a "narrow beam (good beam) geometry"

Half-Value Layer expressed in mm Ai or Cu

for 40-150 kV x-rays: use mmAl

for 100 - 300 kV x-rays: use mmCu

Beam quality specification

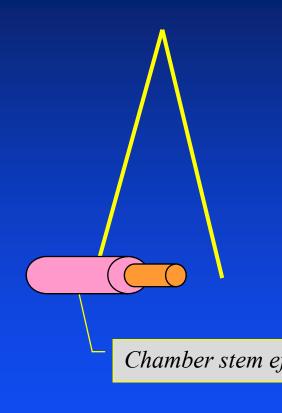
 Use both tube potential and HVL to specify beam quality for chamber calibration

 Use HVL to specify beam quality for determination of chamber correction and conversion factors

Table 1: UW ADCL and NIST beams compared.

NIST BEAM QUALITIES			UW ADCL BEAM QUALITIES			
BEAM	HVL	НС	BEAM	HVL	НС	
Code	(mm Al)		<u>Code</u>	(mm Al)		
L30	0.22	60	UW30-L	0.22	56	
L40	0.49	57	UW40-L	0.49	60	
L50	0.75	58	UW50-L	0.75	61	
L80	1.83	58	UW80-L	1.83	58	
L100 ¹	2.8	59	UW100-L	2.80	58	
M20	0.152	79	UW20-M	0.153	79	
M30	0.36	64	UW30-M	0.354	63	
M40	0.73	66	UW40-M	0.73	64	
M50	1.02	66	UW50-M	1.02	64	
M60	1.68	68	UW60-M	1.68	66	
			UW80-M2	2.96	68	
M100	5.0	72	UW100-M	4.98	72	
			UW120-M ²	6.96	78	
M150	10.2	87	UW150-M	10.2	87	
M200	14.9	95	UW200-M	14.9	94	
M250	18.5	98	UW250-M	18.5	98	
S75	1.86	63	UW75-S	1.86	63	
S60	2.8	75	UW60-S	2.82	76	

All beams are matched as closely as possible to available NIST beam qualities.


Ionization Chamber Calibration

• Free-in-air K_{air} calibration

$$N_K = K_{air} / M$$

• Free-in-air X calibration

$$N_X = X/M$$

$$N_K = N_X (W/e)_{air} (1-g)^{-1}$$

$$N_K = N_X (W/e)_{air} (1-g)^{-1}$$
 $K_{air} = X(W/e)_{air} (1-g)^{-1}$

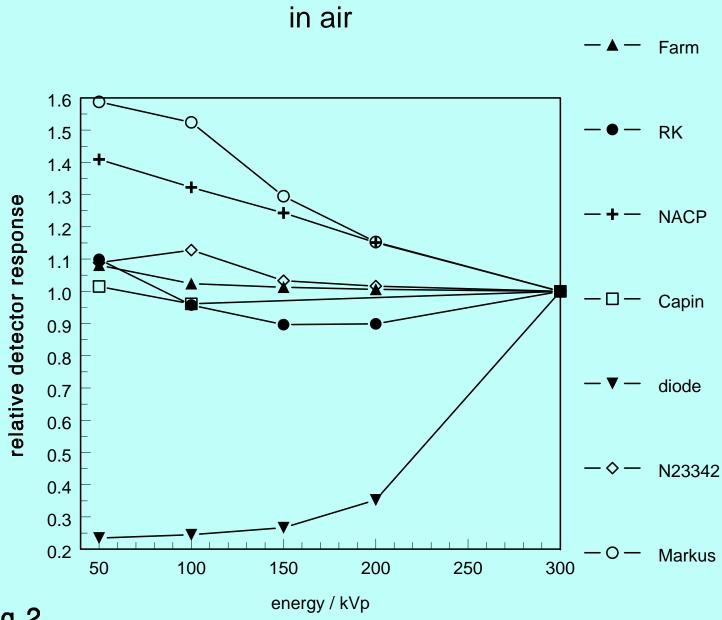
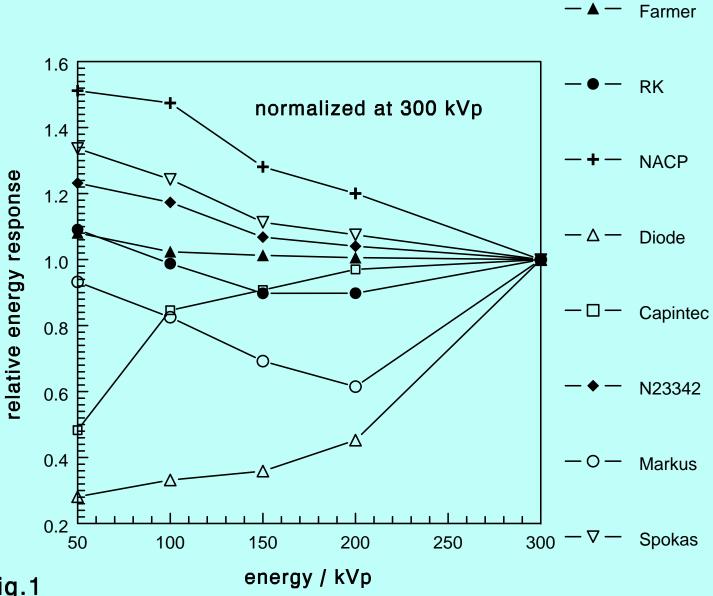
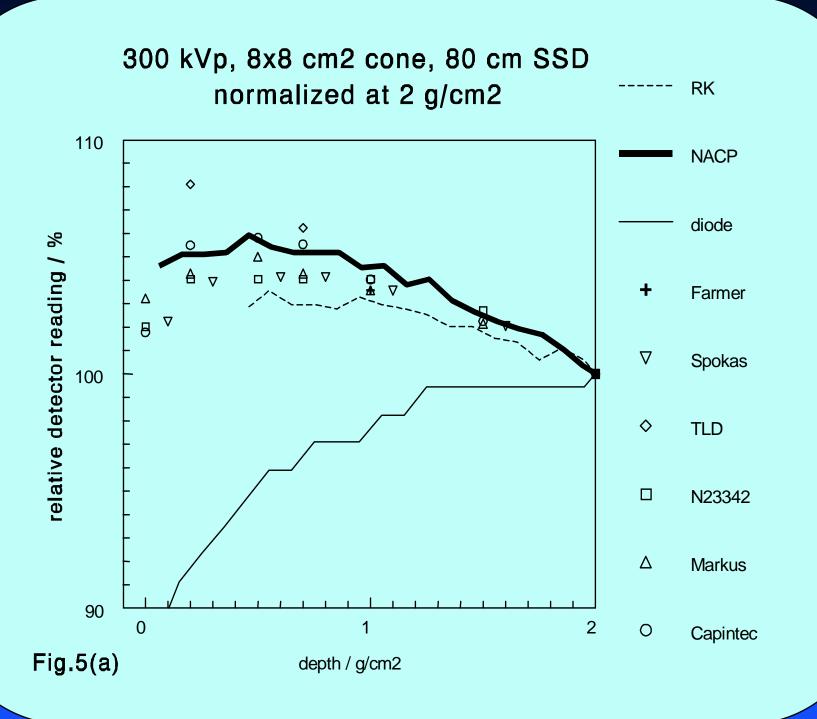
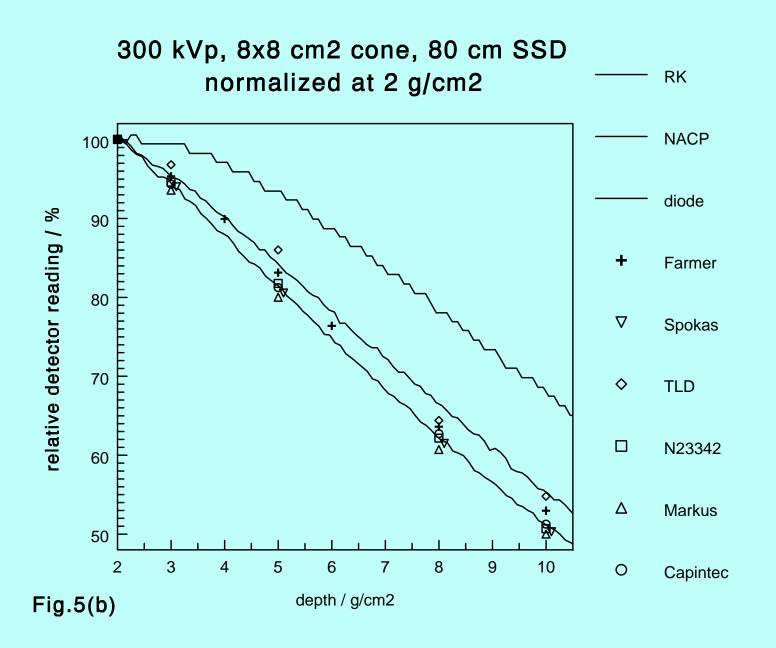


Fig.2

at 2.0 g/cm2 depth in phantom

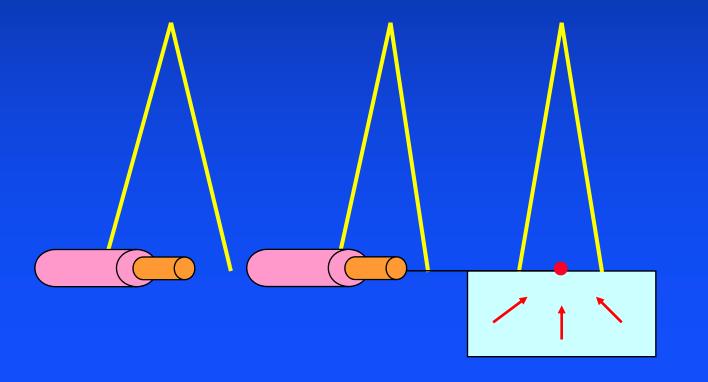




Fig.1

Formalisms for KV X-ray Dosimetry

• For 40-300 kV beams, recommend the back-scatter method if point of interest is on the surface

• For 100-300 kV beams, recommend the inphantom method if point of interest is at a depth



The Backscatter (in-air) Method

• For surface dose determination

$$D_{w} = MN_{K} (\mu_{en}/\rho)_{air}^{w} P_{stem,air} B_{w}$$

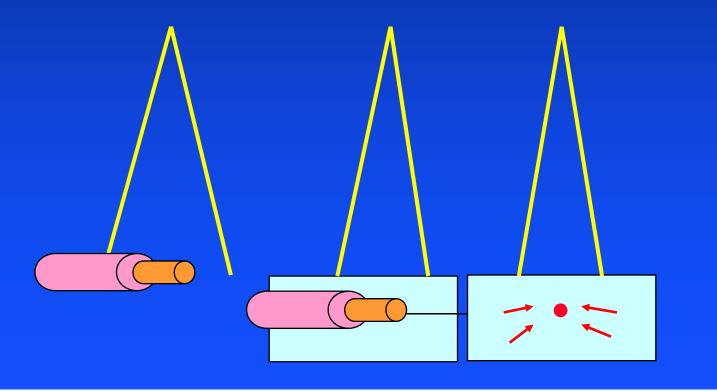
erivation for the Backscatter (In-air) Metho

- Determine the air kerma at a point in air in absence of the chamber $K_{\text{air}}^{\text{in-air}} = MN_{K}P_{\text{stemair}}$
- Convert air kerma to water kerma by

$$K_{\rm w}^{\rm in-air} = K_{\rm air}^{\rm in-air} (\mu_{\rm en}/\rho)_{\rm air}^{\rm w}$$

Derive water kerma on the surface using a backscatter factor

$$K_{\rm w} = K_{\rm w}^{\rm in-air} B_{\rm w}$$


 Derive absorbed dose to water from water kerma assuming charged particle equilibrium

$$D_{\rm w} = K_{\rm w}$$
 CPE exists

The In-Phantom Method

For dose determination at a depth

$$D_{w} = MN_{K} (\mu_{en}/\rho)_{\text{air}}^{\text{W}} P_{\text{sheath}} P_{\text{Q,cham}}$$

Derivation for the In-Phantom Method

- Determine the air kerma at a point in water in absence of the chamber $K_{\text{air}}^{\text{in-water}} = MN_K P_{\text{Ocham}} P_{\text{sheath}}$
- Convert air kerma to water kerma by

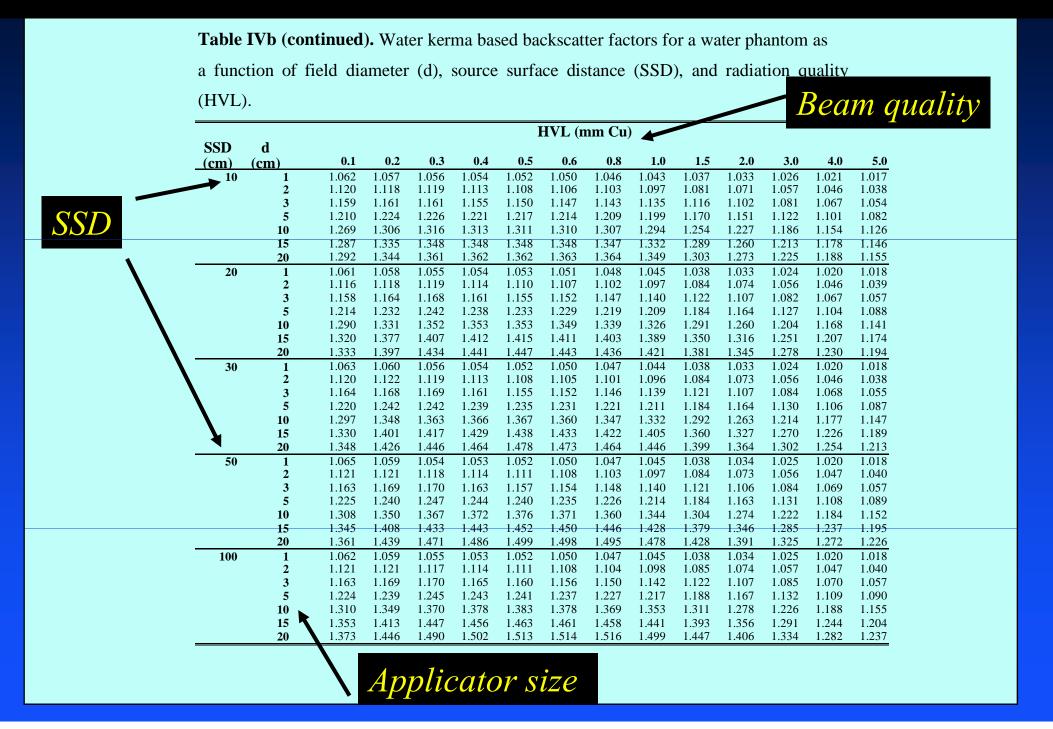
$$K_{
m w} = K_{
m air}^{
m in-water} (\mu_{
m en}/
ho)_{
m air}^{
m w}$$

 Derive absorbed dose to water from water kerma assuming charged particle equilibrium

$$D_{\rm w} = K_{\rm w}$$
 CPE exists

In-air mass energy-absorption coefficient ratio

Table 2 Ratios of mass energy-absorption coefficients averaged over the primary photon spectrum for the beams described in Table 1.


HVL	HVL	w/air	tissue/w	muscle/	lung/w	skin/w	bone/w
(mm	(mm			W			
Al)	Cu)						
0.300	0.010	1.037	0.917	1.016	1.031	0.890	4.20
0.381	0.012	1.033	0.918	1.020	1.035	0.893	4.28
0.875	0.027	1.023	0.922	1.030	1.045	0.902	4.51
1.35	0.422	1.022	0.926	1.032	1.047	0.909	4.45
2.65	0.090	1.025	0.933	1.032	1.046	0.920	4.25
4.76	0.195	1.034	0.942	1.029	1.040	0.934	3.82
9.17	0.574	1.057	0.960	1.018	1.026	0.956	2.885
14.5	1.71	1.088	0.979	1.003	1.005	0.979	1.741
17.6	3.01	1.102	0.986	0.996	0.997	0.985	1.276
19.8	4.32	1.108	0.989	0.993	0.993	0.988	1.080
20.8	4.92	1.109	0.990	0.992	0.992	0.989	1.032

In-water mass energy-absorption coefficient ratio

Table 3 Ratios of mass energy-absorption coefficients averaged over the photon spectrum at 2 cm depth in water irradiated by the beams described in Table 1. The field size is 100 cm² defined at 50 cm SSD.

HVL	HVL	w/air	tissue/w	muscle/w	lung/w	bone/w
(mm Al)	(mm Cu)					
0.300	0.010	1.022	0.921	1.030	1.046	4.54
0.381	0.012	1.019	0.922	1.033	1.049	4.61
0.875	0.027	1.018	0.924	1.035	1.050	4.63
1.35	0.422	1.020	0.929	1.035	1.049	4.46
2.65	0.090	1.025	0.935	1.033	1.047	4.23
4.76	0.195	1.032	0.941	1.030	1.042	3.91
9.17	0.574	1.049	0.954	1.022	1.031	3.23
14.5	1.71	1.077	0.972	1.008	1.013	2.145
17.6	3.01	1.094	0.981	1.000	1.002	1.560
19.8	4.32	1.103	0.986	0.996	0.996	1.255
20.8	4.92	1.105	0.988	0.994	0.994	1.150

Water kerma based backscatter factor

Ratio of backscatter factors, bone to water

Table 4. Ratios of backscatter factors, bone to water, for photon beams 50 - 300 kV (0.875 - 20.8 mm Al HVL) with different field sizes defined at different SSD.

SSD	HVL	Bbone				
		2.	2.	B_w	2.	2.
(cm)	(mm Al)	$(1 \times 1 \text{ cm}^2)$	$(2 \times 2 \text{ cm}^2)$	$(4 \times 4 \text{ cm}^2)$	$(10 \times 10 \text{ cm}^2)$	$(20 \times 20 \text{ cm}^2)$
50	0.875	0.943	0.916	0.890	0.865	0.858
	2.65	0.972	0.938	0.892	0.829	0.798
	9.17	1.022	1.015	0.984	0.885	0.827
	14.5	1.039	1.065	1.079	1.028	0.958
	17.6	1.036	1.069	1.100	1.095	1.049
	20.8	1.022	1.048	1.073	1.094	1.079
30	0.875	0.943	0.916	0.890	0.867	0.861
	2.65	0.973	0.935	0.888	0.834	0.807
	9.17	1.023	1.017	0.988	0.891	0.835
	14.5	1.039	1.067	1.076	1.025	0.967
	17.6	1.037	1.067	1.101	1.090	1.047
	20.8	1.023	1.046	1.078	1.091	1.078
10	0.875	0.943	0.916	0.893	0.874	0.873
	2.65	0.973	0.941	0.901	0.849	0.836
	9.17	1.023	1.017	0.980	0.915	0.878
	14.5	1.039	1.064	1.071	1.032	1.005
	17.6	1.037	1.066	1.092	1.086	1.070
	20.8	1.022	1.044	1.075	1.087	1.078

Overall chamber correction factor

Table VII. Overall chamber correction factors $P_{Q,cham}$ for common cylindrical chambers in medium-energy x-ray beams. The data applies to 2 cm depth in the phantom, and 100 cm^2 field size.

Chamber Type	NE2571	Capintec PR06C	PTW N30001	Exradin A12	NE2581	NE2611 or NE2561
HVL (mmCu)						
0.10	1.008	0.992	1.004	1.002	0.991	0.995
0.15	1.015	1.000	1.013	1.009	1.007	1.007
0.20	1.019	1.004	1.017	1.013	1.017	1.012
0.30	1.023	1.008	1.021	1.016	1.028	1.017
0.40	1.025	1.009	1.023	1.017	1.033	1.019
0.50	1.025	1.010	1.023	1.017	1.036	1.019
0.60	1.025	1.010	1.023	1.017	1.037	1.019
0.80	1.024	1.010	1.022	1.017	1.037	1.018
1.0	1.023	1.010	1.021	1.016	1.035	1.017
1.5	1.019	1.008	1.018	1.013	1.028	1.014
2.0	1.016	1.007	1.015	1.011	1.022	1.011
2.5	1.012	1.006	1.012	1.010	1.017	1.009
3.0	1.009	1.005	1.010	1.008	1.012	1.006
4.0	1.004	1.003	1.006	1.005	1.004	1.003

Chamber Sheath Correction Factor

Table IV: The Monte Carlo calculated correction factors p_s for polystyrene ($\rho = 1.06$ gcm³) sleeves of thickness t. Other conditions are the same as Table II. The 1- σ statistical uncertainties are smaller than 0.001.

Beam quality	p _s for Polystyrene					
(mm A1)	$t = 0.5 \mathrm{mm}$	t = 1 mm	$t = 2 \mathrm{mm}$	t = 3 mm		
1.04	0.990	0.981	0.962	0.943		
2.94 4.28	0.995 0.996	0.990 0.993	0.981 0.986	0.972 0.979		
9.20	0.999	0.997	0.994	0.992		
13.0	1.000	0.999	0.998	0.997		
16.6	1.000	0.999	0.999	0.999		
21.5	1.000	1.000	1.000	1.000		

Consistency between the in-air and in-phantom methods

- Select a method based on point of interest
- Check consistency only if PDD can be measured accurately
- Experimental studies indicated consistent results (about 1%) using both methods at 100 and 300 kV

Ma, Li and Seuntjens (1998) Med Phys 25: 2376-84

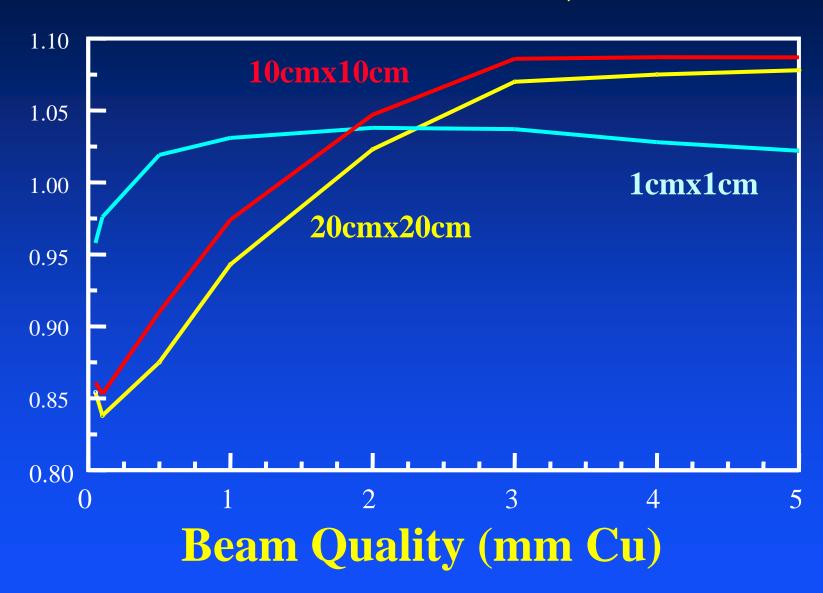
Table II Dose ratios calculated based on Eq. 12 for a 100 kV (2.43 mm Al) beam with a 100 cm^2 field defined at 80 cm SSD. The chamber readings were corrected for temperature, pressure, polarity and ion recombination. The PDD curves were measured using the NACP chamber and corrected using the Monte Carlo calculated C_z factors. The ratios of mass energy-absorption coefficients for water to air, the backscatter factors and the chamber correction factors were taken from the ICRU³ (reference depth = 5 cm), IPEMB²⁵ (reference depth = 2 cm) and the NCS²⁶ (reference depth = 2 cm) dosimetry protocols. The IAEA chamber correction factors were taken from 14 while mass-energy absorption coefficient ratios were from 2 . For this work, the correction factors were taken from ref³.

	ICRU (1973)	IAEA (1987, 1996)	IPEMB (1996)	NCS (1997)	This work
$M_{\scriptscriptstyle air}$	27.99	27.99	27.99	27.99	27.99
$B_{\scriptscriptstyle \mathrm{w}}$	1.252	1.260	1.277	1.281	1.280
$M_{ t z= t ref}$	13.69	13.69	25.84	25.84	25.84
$P_{\scriptscriptstyle extsf{Q}, ext{cham}}$	1.000	1.030	1.023	1.005	0.990
$ \frac{\left(\frac{\overline{\mu}en}{\rho}\right)_{v,air} dir}{\left(\frac{\overline{\mu}en}{\rho}\right)_{v,air}} = ref $	1.000	1.000	1.000	0.996	1.000
$PDD_{ exttt{z=ref}}$	0.375	0.375	0.707	0.707	0.707
R	0.960	0.938	0.956	0.976	0.990

Guidelines for dosimetry in other phantom materials

Determine the surface dose for other phantom materials from

$$D_{\mathrm{med,z=0}} = C_{\mathrm{w}}^{\mathrm{med}} D_{\mathrm{w,z=0}}$$


where

$$C_{\rm w}^{\rm med} = \frac{B_{\rm med}}{B_{\rm w}} \left[(\mu_{\rm en} / \rho)_{\rm w}^{\rm med} \right]_{\rm air}$$

Vary significantly

• The backscatter factor ratios are significant for bone to water but close to 1.0 for soft tissues.

Ratio of Backscatter Factors, Bone to Water

Relative dosimetry measurement

- Large uncertainty in PDD measurements
- Large uncertainty in profile measurements
- Effect of electron contamination
- Choice of detectors
- Choice of phantom materials

100 kVp, 8x8 cm2 cone, 80 cm SSD profile at 1 g/cm2 depth

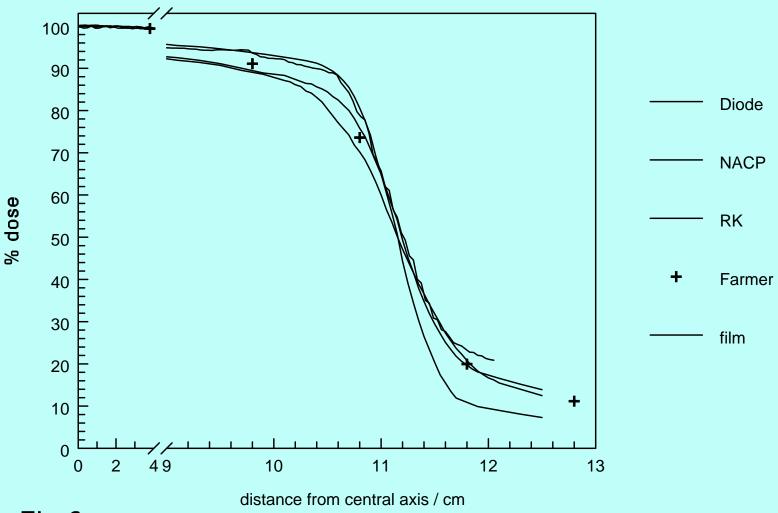
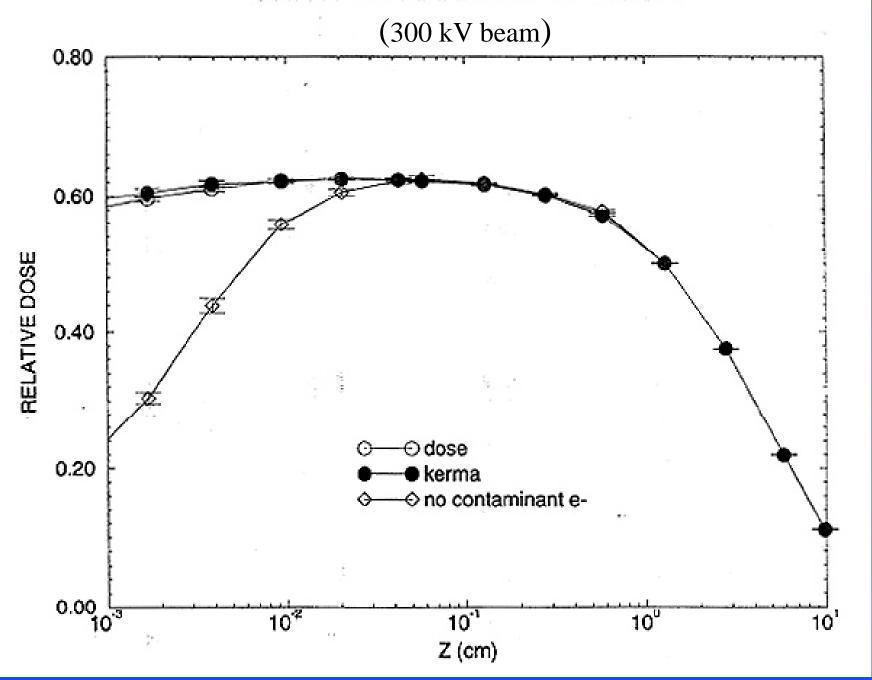
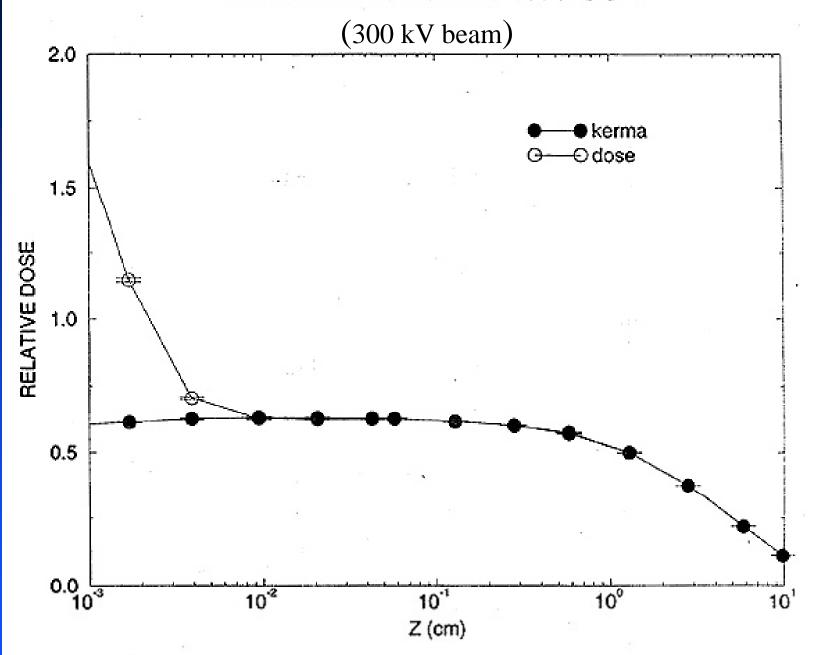




Fig.6

CENTRAL AXIS DEPTH DOSE

CENTRAL AXIS DEPTH DOSE

Summary of TG-61 Recommendations

- Water phantom for absolute dose determination, 2 cm depth for $> 100 \; kV$, plastic phantoms for routine checks
- Effective point of measurement: center of air cavity

40-70 kV: parallel plate chamber 70-300 kV: cylindrical chamber

- Use both tube potential and HVL for chamber calibration
- Appropriate build-up for parallel plate chambers

Summary of TG-61 Recommendations

- Narrow beam geometry for HVL determination
- What method to use depending on beam quality and point of interest (POI)

40-100 kV: only the in-air method should be used

100-300 kV: the in-air method if POI on surface

100-300 kV: the in-phantom method if POI at a depth

- Inter-compare chamber for correction/conversion factors
- Use HVL as beam quality specifier for conversion and correction factor (tabular data preferred)
- Quality assurance (daily, monthly, annually)

Estimated combined standard uncertainty

Table III. Estimated combined standard uncertainty (1 σ) in D_w at the reference depth in kilovoltage x ray beams using a chamber calibrated in-air in terms of air kerma.

	Type of quantity or procedure In-air method (for low and medium energies)	Uncertainty (%)	
1	N_K from standards laboratory or ADCL	0.7	
2	Effect of beam-quality difference between calibration and measurement	2.0	
3	Backscatter factor B_w	1.5	
4	P _{stem,air}	1.0	
5	$[(\overline{\mu}_{\rm en}/\rho)_{\rm air}^{\rm water}]_{\rm air}$	1.5	
6	In-air measurement in the user's beam	1.5	
	Combined standard uncertainty for $D_{w,z=0}$		3.5
7	Conversion to dose to tissue at the phantom surface	1.0	
	Combined standard uncertainty for $D_{\text{tissue},z=0}$		3.6
8	Determination of dose at other points in water	3.0	
	Combined standard uncertainty for $D_{w,z}$		4.7
	In-phantom method (for medium energies only)		
1	N_K from standards laboratory or ADCL	0.7	
2	Effect of beam-quality difference between calibration and	2.0	
	measurement		
3	Chamber correction factor $P_{O, cham}$	1.5	
4	Chamber waterproofing sheath correction factor P_{sheath}	0.5	
5	$[(\overline{\mu}_{\rm en}/\rho)_{\rm air}^{\rm water}]_{\rm water}$	1.5	
6	In-water measurement in the user's beam	2.0	
	Combined standard uncertainty on $D_{w,z=2 \text{ cm}}$		3.6
7	Determination of dose at other points in water	3.0	
	Combined standard uncertainty on $D_{w,z}$		4.7

3.5% surfa

4.7% a dep

Conclusions

- Exposure/kerma based dosimetry procedures
- Backscatter method for both low- and mediumenergy x-ray beams
- Complete data set available for μ_{en}/ρ , B, $P_{Q,cham}$ and P_{sheath}
- Consistent results using both formalisms

Questions for kV x-ray dosimetry

- 1. Does a Farmer chamber have enough buildup for kV x-ray beams?
- 2. Does the Bragg-Gray cavity theory apply to a Farmer chamber for kV x-ray beams?
- 3. Is the difference between K_{col} and K significant for kV x-ray beams?
- 4. Are air-filled ionization chambers used as "photon detectors" or "electron detectors" for kV beams?

Answers:

- 1. Yes, electron ranges < 0.5mm of water
- 2. No, significant energy deposition from electrons generated in the air cavity
- 3. No, g < 0.1%
- 4. "Photon detectors"