Research Strategies in Proton Therapy: Proving the Promise and Avoiding the Perils

Nancy Price Mendenhall, M.D.
University of Florida Proton Therapy Institute
Medical Director
Research Strategies in Proton Therapy: Objectives

- Promise
- Perils
 - Clinical (3)
 - Ethical
 - Health Care Cost
- Suggested Research Strategies
The Promise of Proton Therapy
Radiation Therapy Basics

- Radiation damage is non-specific.
- Response probability is dose-related and volume-related.
- Dose distribution key to outcome.
Improvements in Photon Dose Distribution

1. ~1980
 Opp 6X

2. ~1985
 Opp 15X

3. ~1990
 Vertex Field

4. 3D Conformal
 ~1995

5. IMRT
 ~2005

~105% to ~20%
red = 100%
aqua = 20%

Courtesy:
D Louis,
D Yeung,
Z Li, C Li
Improving Dose Distribution with photons

- Changes in photon energy
- Intersection and modulation of multiple photon beams overlapping over target *
- These solutions* have resulted in significant and favorable *redistribution of integral dose**.
- We may have reached the limit in our ability to improve dose distribution with X rays and to improve outcomes through the *redistribution of integral dose.*

*Gamma Knife, SRS, SRT, IMRT, Arc IMRT, Tomotherapy, Cyberknife.

**Integral dose is dose to non-targeted tissues.
Proton Dose Distribution: The Bragg Peak

- 200 KV
- 60 Cobalt
- 22 MV X-rays
- 22 MEV Electrons
- Proton Bragg Peak
- Spread Out Proton Peak
Protons vs. Ext Beam Photons

No matter how many beams are used and how much 2-dimensional static or dynamic field shaping occurs...

- **Photons:** most of radiation dose is wasted as integral dose deposited in non-targeted tissues, i.e., an external photon beam is an inefficient\(^1\) and inaccurate\(^2\) means of radiation therapy with few prospects for further improvements.

- **Protons:** most of radiation dose is target dose, deposited in targeted tissues, i.e., an external proton beam is a much more efficient and accurate means of radiation therapy with great potential for future improvement.

\(^1\) Inefficient in that most dose is wasted.
\(^2\) Inaccurate in that most dose is placed outside the target.
Opp 6X ~1980

Opp 15X ~1985

~105% to ~20%
red = 100%
aqua = 20%

3 Field Vertex ~1990

3D Conformal ~1995

IMRT ~2005

Proton ~2009

Courtesy: D Louis, D Yeung, Z Li, C Li
The promise of proton therapy is that a reduction in integral dose can be leveraged to:

1. Reduce toxicity
2. Permit dose escalation/intensification to improve cancer control
3. Ultimately reduce overall health care costs*
Some Perils of Clinical Research
Proton Therapy: Clinical Issues
#1: Failure to recognize the importance of integral dose
AKA: The Concept of a “Safe Threshold Dose”
Paranasal Sinus

IMXT

IMPT

Dose Difference

PSI
Modeling Radiation Dosimetry to Predict Cognitive Outcomes in Pediatric Patients with CNS Embryonal Tumors Including Medulloblastoma

Merchant et al, IJROBP - 2006

• Results
 – Exposure to supratentorial brain had significant impact on long-term IQ and cognitive function
 – Each Gy of exposure had a similar effect
 • **NO DOSE THRESHOLD**

Additional studies by same group indicating exquisite relationship between radiation dose and neuroendocrine function.
Juvenile Angiofibroma: IMRT vs. Protons

V20 = 50%
V10 = 71%

V20 = 4%
V10 = 9%

Courtesy: Robert Malyapa, Daniel Yeung, Zuofeng Li
Are low integral doses relevant in adults?
“Safe Threshold Dose”
Dose Escalation in Prostate Cancer with X rays at MDACC

T1b-T3 Prostate Ca
1993-98
Med F/U 8.7 y

70 Gy
8y FFF 59%
P = 0.004

78 Gy
8y FFF 78%
P = 0.004

Kuban et al, IJROBP, 70:67-74, 2008.
Dose Escalation in Prostate Cancer: What about toxicity? MDACC

T1b-T3 Prostate Ca
1993-98
Med F/U 8.7 y

70 Gy
≥ GR2 GI 13%
P = 0.013

78 Gy
≥ GR2 GI 26%

Kuban et al, IJROBP, 70:67-74, 2008.
• Kuban et al have reported that the volume of rectum receiving lower doses (35 Gy to 60 Gy) is even more significantly predictive of future rectal injury than volumes receiving doses of 70 Gy+.

Vargas et al, in a comparison of IMRT and proton plans for prostate cancer patients treated at UFPTI, have demonstrated significant reductions in the volumes of non-targeted tissues receiving a full range of doses (10-80 Gy/CGE) with protons.

Vargas et al, IJROBP 70: 744-751, 2008
Vargas et al, in a comparison of IMRT and proton plans for prostate cancer patients treated at UFPTI, have demonstrated significant reductions in the volumes of non-targeted tissues receiving a full range of doses (10-80 Gy/CGE) with protons.

Vargas et al, IJROBP 70: 744-751, 2008
Concept of “Safe Threshold Dose”

• Necessary compromises with X ray dosimetry:
 - Decreased cure rates to avoid early and/or overt toxicity.
 - Assumptions that low integral doses below the threshold for early and/or overt toxicity were safe.

• Increased survivorship and sophisticated tools refute the concept of “safe dose.”

• Historical Examples:
 - Cardiac disease in breast cancer survivors offset survival benefit of XRT.
 - Infertility, cardiac and thyroid disease in CSI survivors

• No published literature does not excuse us, as clinicians, from our responsibility to our patients
Clinical Research Strategies in Proton Therapy

- Studies must be designed that do not knowingly subject patients to unnecessary integral dose radiation.
#2: Failure to control for confounding variables affecting trial execution and subject selection.
Trial Execution: The importance of target definition and treatment delivery

- Because the vast majority of dose deposited goes into the targeted area, proton therapy may be more sensitive to errors in target definition and treatment delivery.
- Imaging must be high quality and patterns of subclinical disease spread must be understood, to create an accurate CTV expansion.
- Otherwise a trial may yield the answer to a targeting or delivery question rather than a comparative effectiveness question.
Historical studies in prostate cancer are difficult to compare:

- Different patients receiving surgery, brachytherapy, external beam irradiation
- Different pretreatment conditions
- Clinical staging
- Different thresholds for toxicity intervention
T1C Low Risk Prostate Cancer

30 cc, asymptomatic

110 cc, symptomatic

• Both candidates for protons and IMRT, only A for brachy or surgery
• Dissimilar pretherapy conditions impacting toxicities
• Dependency on clinical exam for prognostic stratification
Future Comparative Effectiveness Research Should

- Compare apples with apples
- Use more objective stratification criteria than clinical exam
- Deal with confounding variables of pretreatment condition, medications, varying thresholds for intervention
#3: Failure to ask questions for which sufficiently sensitive tools and time are available to measure the important end points
Failure to ask questions for which time and sufficiently sensitive tools are available to measure the important end points

- **Example: Postmastectomy Radiation Therapy (PMRT) Trials**
- Despite the correctness of the now-survival benefit of PMRT, multiple trials involving many thousands of breast cancer patients failed to detect a survival improvement, in part because imaging technology was inadequate for 1) evaluation of the adequacy of treatment delivery and 2) for the detection of the endpoint of concern: local and regional breast cancer recurrence.
Dose Escalation in Prostate Cancer using protons: PROG 95-09*

Accrual: 1996-1999
Median F/U 6.7Y

T1b/T2b Prostate Ca, PSA < 15
50.4 Gy with X rays

Proton boost
70.2 GyE

5y FFF
79%**

P = 0.001

Proton boost
79.2 GyE

5y FFF
91%**

*Zeitman et al, JAMA, September, 2005 and February, 2008
**Originally reported as 63% vs. 81%.
PROG 95-09 Dose escalation using proton therapy in Prostate Cancer

T1b/T2b Prostate Ca
PSA < 15
PROG 95-09

70.2 GyE
5y FFF LR: 83%
IR: 75%
P = .001

79.2 GyE
5y FFF LR: 97%
IR: 87%
P = .02

*Zeitman Correction, JAMA, February, 2008.
Dose Escalation in Prostate Cancer PROG 95-09*

T1b/T2b Prostate Ca PSA < 15, 1996-1999
Median F/U 6.7Y

- 70.2 GyE
 - GR2(3) GI Toxicity 8(1)%**
 - P = 0.005 (ND)

- 79.2 GyE
 - GR2(3) GI Toxicity 17(1)%**

Zeitman et al, JAMA, September, 2005 and February, 2008
T1b/T2b Prostate Ca
PSA < 15, 1996-1999
Median F/U 6.7Y

- 70.2 GyE
 - Q of L GI Late Tox.
 - 7.5%**

- 79.2 GyE
 - Q of L GI Late Toxicity
 - 7.7%**

Talcott, ASCO, 2008. “These results suggest that use of proton radiation boosts may partially mitigate treatment-related toxicity from increased dose.”
Trials Based on Quality of Life

- At this point in time, it is unclear that quality of life tools are sufficiently sensitive to detect important differences among treatments despite very different documented toxicity outcomes.
- Trials designed primarily as quality of life studies may not be a wise use of resources at this stage in development of quality of life assessment tools, particularly if the actual treatment itself is a limited resource.
Comparative Effectiveness
Trials: BNK 06-01

Courtesy of Dr. Chip Nichols
Purpose:

• Determine if pit bulls are better fighting dogs than standard poodles.
Methods and Materials

• “Raoul,” a 2 year old standard poodle faced “Jaws,” a 2 month old pit bull, in a BNK sanctioned match.
Results

• The dogs wagged their tails and sniffed each other for 15 minutes.
• The match was declared a draw.
Conclusion

• Standard Poodles and Pit Bulls are equivalent fighting dogs.
BNK 08-01 Trial

• In 2008, the BNK Cooperative Group, in an effort to validate the results of the BNK 06-01 trial, conducted the BNK 08-01 Trial.

• Methods and Materials: “Raoul” and “Jaws” again faced each other in a BNK sanctioned match.
RESULTS

Raoul

Jaws

Courtesy of Dr. Chip Nichols
Conclusion

• The study design for BNK 06-01 was flawed.
• Early assessments underestimated the mature performance of one arm of the comparative effectiveness trial.
Disclaimer-Conflict of Interest

Have a family investment in canines.
The Perils of Clinical Research in Proton Therapy: Ethical Issues
#4: Failure to ensure respect and beneficence to the patient and research subject.
Hippocratic Oath*

*Three of the 6 basic tenets of the Hippocratic Oath define the relationship between the physician and patient and inform the nature of “ethical” clinical research.

1. To practice and prescribe to the best of my ability for the good of my patients, and to try to avoid harming them.

2. Never to do deliberate harm to anyone for anyone else's interest.

3. To keep the good of the patient as the highest priority. There may be other conflicting 'good purposes,' such as community welfare, conserving economic resources, supporting the criminal justice system, or simply making money for the physician or his employer that provide recurring challenges to physicians.
The Belmont Report

- Belmont Report, April 18, 1979
- Principles and guidelines for the protection of human subjects of research.
- Three underlying principles
 - Respect
 - Beneficence
 - Justice
The Belmont Report

• An *autonomous person* is an individual capable of deliberation about personal goals and of acting under the direction of such deliberation. Non-autonomous persons require protection.

• To show lack of respect for an autonomous agent is
 - to repudiate that person’s considered judgments
 - to deny that person the freedom to act on those considered judgments
 - or to withhold information necessary to make a considered judgment, when there are no compelling reasons to do so.
Pertinence of Hippocratic Oath and Belmont Report in Consideration of Proton Therapy Trials

• Assuming that confounding variables mentioned above are accounted for, the only difference between proton therapy and another form of external beam radiation therapy would be the difference in integral dose.

• The nature of the trial, then, would be to ask the question of whether integral dose to non-targeted tissue has a harmful effect.

• The patient has no potential benefit from such a trial.

• Therefore the guiding principles of both the Belmont Report and the Hippocratic Oath are violated.
The Hippocratic Oath and Belmont Report

• **If the informed consent does not explain the nature of the trial question,**
 - then critical information necessary for autonomous decision has been withheld from the patient, further violating the Belmont principle of respect.

• **It is highly unlikely**
 - that an informed patient would choose to participate in a trial asking the question of whether integral dose might be harmful.

• **It is unlikely**
 - that a treating radiation oncologist, who has taken the Hippocratic Oath and read the Belmont Report, would consider recommending such a trial.
Rights of Patients and the IRB

- The Belmont Report requires respect of the patient’s considered judgment.
- Proton therapy is not experimental—efficacy clearly documented.
- IRB unlikely to permit protocols that function as gatekeepers to deny patients access to a particular efficacious treatment by requiring participation in a protocol.
RCT simply comparing proton therapy with other forms of external beam radiation therapy will present significant ethical problems for most physicians familiar with proton therapy and likely be rejected by the informed patient.

The argument might not be that we already have evidence of better outcomes with proton therapy, but that we do not believe that unnecessary exposure of a patient to excess integral dose is in that patient’s best interest.
#5
The Competing Good of Comparative Costs of Treatment

But lower priority
The Slide Rule

February 1, 1972: $12.50

May 5, 2009: $33.00
The Hewlett-Packard HP-35

February 1, 1972: $399.00
The Slide Rule and The HP-35

Accuracy

Efficiency

Increased potential for good
The Hewlett-Packard HP-35

February 1, 1972: $399.00

May 4, 2009: $79.99

Comparative Cost Assessment

Invalid if:
it does not account for costs of recurrence, costs of acute and late morbidity, costs of lost social effectiveness... and equipment replacement

Will change with:
increasing operational efficiency, volume, technical development, competition

Highly likely that:
the treatment producing the highest therapeutic ratio will be the most cost effective, and, because of this, competition to provide it will drive down costs, making it increasingly more effective with time.
Suggested Clinical Research Strategies in Proton Therapy*

*In particular as they relate to clinical research.
Suggested research strategies for proton therapy

- Randomized Controlled Trials of proton therapy versus another external beam radiation therapy modality present basic ethical issues (as well as practical issues related to the maturity of the technology available, at this point in time, for control of potential confounding variables).
Suggested research strategies for proton therapy

• Dosimetry studies to establish probable improved outcomes.
 - Dosimetry studies have been done in all areas of UFPTI investigation thus far.
Suggested research strategies for proton therapy

• Prospective Outcome Tracking Trials: for all patients treated with proton therapy, which is currently a limited resource.
 – 99% of all patients treated at UFPTI thus far have gone on our IRB-approved outcome tracking protocol.
 – This kind of trial can identify unanticipated outcomes that require further study, further technical development, new opportunities.
Suggested research strategies for proton therapy

- Specific Proton Therapy Trials as techniques are developed, to ask specific questions and establish specific benchmarks for proton therapy outcomes should be performed.
 - At UFPTI, 3 trials have been completed in low, intermediate, and high risk prostate cancer and 14 trials are currently ongoing in head and neck cancer, brain tumors, pancreas, lung, Hodgkin’s, sarcoma, and prostate cancer, additional studies in development in specific pediatric tumors.
Suggested research strategies for proton therapy

• Virtual Controlled Trials: based on actual IRB proton therapy trials with a virtual internal control arm created by application of competing radiation therapy technology treatment planning to actual proton target with estimation of virtual outcomes based on peer-reviewed disease control and toxicity models.

• UFPTI proposal made in response to ARRA CER RFP.
Thank You

To AAPM and ASTRO
To The Particle Therapy Community
To my UF and UFPTI colleagues and staff
And to all those who have made it possible for us to investigate the promise of proton therapy.