Clinical Aspects of Proton Therapy in Lung Cancer

Joe Y. Chang, MD, PhD
Associate Professor
Clinical Service Chief
Thoracic Radiation Oncology
Lung Cancer Basic Factors

• No. 1 cancer killer
• 161,840 patients died in 2008
 – Higher than prostate, breast, colon/rectum, and pancreas cancers combined
• Overall 5 year survival 15%
• Local control: about 50% with standard photon dose (60 to 66 Gy)

• Changes are needed!
Proton Therapy in Lung Cancer:

Improves therapeutic ratio and allows dose escalation/acceleration?

![Graph showing probability of local control or complications vs. dose with tumor and normal tissue comparison.]

- Local Control
- Complications
- Tumor
- Normal tissue

Probability of Local Control or Complications vs. Dose
Virtual Clinical Studies in NSCLC:

1. PSPT compared with 3-D CRT and IMRT
2. IMPT compared with IMRT
3. IMPT compared with PSPT
PSPT reduces normal tissue dose compared with 3-DCRT/IMRT

10-20% absolute improvement in lung V5 and V10
33-61% absolute improvement in non-target integral dose

Stage I
PSPT dose escalation still spares more normal tissues

Proton 87.5 CGE vs photon 60 GY in stage I
Proton 74 CGE vs photon 60 Gy in stage III

IMPT reduces normal tissue dose compared with IMRT in stage IIIB NSCLC

Absolute improvement in lung: V5: 22% V10: 13%
IMPT allows individualized radical radiotherapy to dose of 74 Gy to 84 Gy
IMPT improves normal tissue sparing and target coverage compared with PSPT in complicated anatomy and allows further dose escalation.

>5% absolute improvement in lung V5 and V10

50%: move 0.5 to 1 cm
10%: move > 1 cm

Lung Cancer Moves

Non gate: Free breathing

Gating in 40~60% expiration phase
Intra-fraction motion:
4-D CT-based proton planning: ITV approach

MIP density replaces IGTV in average CT data base for compensator design and dose calculation achieved the best overall target coverage and critical structure sparing.
A. PET

B. MIP density replaces IGTV in average CT data set

C. Isodose distribution in average CT

4-D CT-based ITV approach for proton treatment planning

Chang et al: IGRT in lung cancer 2007
Inter-fraction motion and anatomy changes: A typical case

CTV density change correlated with increased contra-lateral lung mean dose over 7 weeks of RT in proton but not IMRT

Inter-fraction anatomy/motion change
A extreme case

Week 1

Week 7

CTV coverage drops from 99% to 92.3% with proton but not in IMRT

Adapted proton therapy

Initial plan recalculated based on CT after 5 wks TX

Re-plan based on CT after 5 wks TX

Adapted proton therapy
Adapted proton therapy

Chang et al: IGRT in lung cancer 2007
Published and Undergoing Proton Therapy Clinical Studies in NSCLC
Published proton therapy clinical studies in NSCLC

Total of 5 published series (n=215), mainly stage I NSCLC. No concurrent chemo

1. Dose: range 45 to 94 CGE in 7 to 32Fx

2. Issues:
 - Wide range of disease stage
 - Tumor motion: no 4-D CT
 - Wide range of dose and fractionation
 - Dose may not be adequate in some studies

3. Toxicities appears reduced.
 - Data in stage Ia with BED > 100 CGE achieved superior result comparable to surgery
Phase I/II escalated/accelerated proton therapy in early stage NSCLC
(Chang et al: IASLC 2009, supported by PO1 grant)

Eligibility:

Medically inoperable centrally located T1 or any location of T2 and selective T3N0M0 (chest all) (stage I-II)

Primary objectives:

Local control and toxicity

Proton Dose:

87.5 CGE with 2.5 CGE/F
Phase I/II escalated/accelerated proton therapy in early stage NSCLC

(Chang et al: IASLC 2009, supported by PO1 grant)

Preliminary Results:

20/40 pts enrolled.
Median F/U 16.5 months (range 5-24.1 months)

Toxicity:
No grade 4 or 5 toxicity, only grade 3 toxicity is dermatitis
Grade 2 pneumonitis: 7%
Grade 2 esophagitis: 7%

Tumor control:
Rates of local control: 93%
Regional lymph node failure 7%,
Distant metastasis 20%.
Proton therapy (87.5 CGE) in central stage I NSCLC

A. Before Proton

B. After Proton

Joe Y Chang
Local recurrence after 87.5 CGE proton therapy in T2 adenocarcinoma

Pre-RT

Proton TX

3 months

6 months/Bx

9 months after chemo

Joe Y Chang
Phase II dose escalated proton/chemo therapy for stage III NSCLC
(Chang et al: ASTRO 2009, supported by PO1 grant)

Eligibility:

Inoperable extensive stage III NSCLC

Primary objectives:

Survival and toxicity

Proton Dose:

74 CGE with 2 CGE/F with concurrent Carb/Taxol
Phase II dose escalated proton/chemo TX for stage III NSCLC
(Chang et al: ASTRO 2009, supported by PO1 grant)

Preliminary Results:

47/65 pts enrolled. 30 pts with median F/U 16 months (range 7-26 months)
Median overall survival has not been reached.

Toxicity:
- No grade 4 or 5 toxicity.
- Grade 3 adverse effect:
 - Dermatitis (13.3%)
 - Esophagitis (6.7%, compared with 20% in 63 Gy IMRT)
 - Pneumonitis (3.3%, compared with 10% in 63 Gy IMRT)

Tumor Control:
- Isolated local failure within PTV: 13.3%
- Regional lymph nodes recurrence outside PTV: 13.3%
- Distant metastasis: 20%
- Distant metastasis + local/regional failure: 16.7%.
Stage IIIB NSCLC treated with 74 CGE proton and chemotherapy

Before proton therapy

One year After therapy

CT

PET

Joe Y Chang
Tumor recurrence

PSPT with cold spot

Joe Y Chang
Which is better: Proton or IMRT

MDACC/MGH PO1 grant:

Phase II adaptive randomization:

Proton therapy v.s. IMRT

Eligibility: Stage III NSCLC

Dose: 74 Gy with concurrent Carb/Taxol in both arms

Primary objectives: Grade 3 pneumonitis and local control
CONCLUSIONS:

- Proton therapy reduces toxicity and allows for dose escalation/acceleration in NSCLC

- 4-D based treatment planning is crucial and adapted treatment is indicated in selective patients

- Further optimizing proton therapy is needed
Acknowledgements

MDACC

- Radiation Oncology
 - James D. Cox, MD
 - Ritsuko Komaki, MD
 - Zhongxing Liao, MD
 - M. Kara Bucci, MD
 - Melenda Jeter, MD
 - Mary McAleer, MD, PhD
 - Michael O’reilly, MD, PhD
 - All thoracic and PTC dosimetrists and therapists and clinical staff

- Thoracic Surgery
 - Jack A. Roth, MD
 - Stephen Swisher, MD
 - All thoracic surgeons

MGH

- Radiation Physics
 - Radhe Mohan, PhD
 - Lei Dong, PhD
 - Xiaodong Zhang, PhD
 - Richard Amos, MS
 - Peter Balter, PhD
 - Michael Gillin, PhD
 - Ron. Zhu, PhD
 - All Thoracic and PTC Medical Physicist

- Thoracic Medical Oncology
 - Frank Fossella, MD
 - All Thoracic Medical Oncologists

Supported by NIH PO1 grant for optimizing proton radiotherapy
Thank you