18F-FDG-PET/CT in Cancer Treatment: Indications and Results in 2008

David L. Schwartz, M.D.
Departments of Radiation Oncology and Experimental Diagnostic Imaging
U.T. M.D. Anderson Cancer Center

1.1M+ scans at 1700+ sites in 2005
>90% of all new purchased scanners are PET/CT
90-95% of PET imaging is for cancer

Current costs/financial issues:
- Baseline $200K for new PET facility (room renovation, hot lab, radiation safety equipment)
- $1.5M for new PET scanner
- $1.7-2.5M for new PET/CT scanner
- Personnel
- Tracer costs
- Reimbursement issues (DRA)

Roles of PET/CT in Cancer Treatment
- Diagnosis
- Staging
- Predict tumor behavior
- Geographic tumor delineation
- Treatment response
- Surveillance
- Restaging

Current CMS-Approved Cancer Sites for PET/CT Staging & Restaging
- Breast
- Cervix
- Colorectal
- Esophagus
- Head and Neck
- Lymphoma
- Non-Small Cell Lung
- Melanoma
- Sarcoma
- Thyroid

http://www.cms.gov/coverage
CMS-Approved Cancer Sites/Indications for NOPR Enrollment

- Pancreas
- Ovarian
- Small Cell Lung
- Multiple Myeloma
- Unknown Primary
- Additional indications for CMS-approved sites
 - Lymphoma response assessment
 - NSCLC/H&N response assessment
 - Brain/Cervix restaging

Overview

- Site-by-site summary of accepted or evolving indications for FDG-PET/CT (orange = not CMS-approved)
- Current head and neck cancer FDG-PET/CT practice, with case examples
- Future directions

http://www.cms.gov/coverage

Breast Cancer

- Staging of high risk disease
 - Nodal staging
- Characterization of bone lesions
- Staging recurrent disease
- Response to chemotherapy

Breast Cancer—Axillary Staging

Breast Cancer—PET vs. SLNB

Breast Cancer—Bone Lesions

Cervix Cancer

- Staging of high risk disease
 - Nodal staging

- Staging recurrent disease

- Radiation treatment planning
Cervix Cancer

Colorectal Cancer

- Staging of rectal disease
 - Nodal staging
- Staging of non-liver metastases
 - Patient selection for liver surgery
- Staging recurrent disease
- Radiation treatment planning
- Response to chemotherapy

Rectal Cancer—Nodal Staging/XRT Planning

Bass M, et. al. *IJROBP* 70:1423-26 [2008]

Colorectal Cancer—Extrahepatic Staging

Occult Colorectal Cancer

Esophageal Cancer

• Staging of distant disease

• Response to preoperative therapy
 – Needs to be done with endoscopic UTS
 – Timing remains key issue

Esophageal Cancer

Upfront DM Staging Preop Restaging

Esophageal Cancer—Early Response

Esophageal Cancer—Residual vs. Inflammation

Non-Small Cell Lung Cancer

- Diagnose solitary pulmonary nodules
- Mediastinal and distant staging
 - Preoperative assessment (Ph III data)
- Staging recurrent disease
- Radiation treatment planning
 - One Ph II series
- Response to chemotherapy

Solitary Pulmonary Nodule

PET vs. CT

PET/CT

Non-Small Cell Lung Cancer—XRT Planning

Hong R, et. al. / IJROBP 67:720-26 [2007]
Faria S, et. al. / IJROBP 70:1035-38 [2008]
Non-Small Cell Lung Cancer—Ph III Data

ACOSOG Z0050

PLUS Trial

Lymphoma

- Characterize post-chemotherapy mass
- Response to chemotherapy
 - FDG-PET is formal part of IWG guidelines
- Staging recurrent disease

Lymphoma—IWG Response Criteria

- Staging of nodes and distant disease
- Staging recurrent disease

Sarcoma

- Staging of distant disease
 - Complements MRI and bone scanning
 - Inferior to spiral CT for lung assessment
- Clarification of CT/MRI findings
 - Fixation devices, post-operative scarring
- Staging recurrent disease
- Tumor grading/prognosis
- Response to chemotherapy

Melanoma

- Staging of nodes and distant disease
- Staging recurrent disease

Sarcoma—Promise and Pitfalls

Head and Neck Cancer

“Dose Sculpting” to Avoid Normal Tissues

Cumulative IMRT Adoption

Locoregional Control of Oropharyngeal Carcinoma

<table>
<thead>
<tr>
<th>Conventional</th>
<th>IMRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-90% T1-2</td>
<td>92%</td>
</tr>
<tr>
<td>30-70% T3-4</td>
<td>87-94%</td>
</tr>
</tbody>
</table>

Salivary Recovery After IMRT

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>N</th>
<th>Mean</th>
<th>Wilcoxon Rank Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D XRT</td>
<td>12</td>
<td>0.33</td>
<td>11</td>
<td>0.43</td>
<td>$P = 0.43$</td>
</tr>
<tr>
<td>IMRT</td>
<td>38</td>
<td>0.49</td>
<td>20</td>
<td>0.82</td>
<td>$P = 0.002$</td>
</tr>
</tbody>
</table>

“Dysphagia Structures”

Chao K, et. al. (eds.) *Practical Essentials of IMRT, 2nd Edition* [2005]

H&N CT for Target Delineation

Chao K, et. al. (eds.) *Practical Essentials of IMRT, 2nd Edition* [2005]
IMRT Dose Prescriptions

- 70 Gy/35 fx
- 63 Gy/35 fx
- 56 Gy/35 fx

CT Target Delineation

Chao K, et. al. (eds.) *Practical Essentials of IMRT, 2nd Edition* [2005]

MR Fusion for Target Delineation

How Could PET/CT Help XRT?

- **Tumor localization**
 - Enlarge/reduce/confirm primary tumor target
 - Enlarge/reduce/confirm neck coverage
- **Treatment selection**
 - Locoregional and whole body staging
 - Biological characterization
- **Response assessment**
 - Need for neck dissection
H&N FDG-PET Staging—Early Data

- 90-100% primary lesions visualized

- Neck Staging
 - Sensitivity: 74-91%
 - Specificity: 88-98%
 - Negative Predictive Value: 88-99%

- cN0 neck staging accuracy?

H&N FDG-PET Staging—Meta-Analysis

- 32 series, 1236 cases with neck dissection path
 - All series pre-2005 studied PET alone

- Validated FDG-PET for neck staging
 - Sensitivity: 79% [CI = 72-85%]
 - Specificity: 86% [CI = 83-89%]
 - Outperformed CT head-to-head

- Not effective for staging cN0 patients

H&N FDG-PET Whole Body Staging

- 33 scans in 35 consecutive pts

- 7 pts (21%) FDG+ distant disease
 - 4 pts with lung/liver/bone mets
 - 3 pts with secondary cancers

- FDG-PET provided higher yield staging
 - CT missed 2/3 mediastinal mets
 - CT missed distant disease in 2/7 patients

PET/CT GTV Delineation
IMRT Guided by PET/CT Staging

Based on CT only

Based on PET/CT

FMISO-PET/CT—Dose Painting by Numbers

PET/CT Challenges—GTV Registration

PET/CT Challenges—GTV Thresholding

Burri RJ, et. al. *IJROBP* 71:682-88 [2008]
Primary H&N Tumor SUV & Outcomes

- U Iowa (85 pts/retrospective)
 - 98-100% NPV at primary and neck if FDG-PET negative after IMRT
 - Limited primary tumor specificity

- Stanford (103 pts/retrospective)
 - 96-97% NPV overall
 - Scanning >1 month post XRT improved sensitivity and NPV

- What is the optimal timing for post XRT PET imaging?

\[p = 0.017 \]

FDG-PET Response Assessment

- U Iowa (85 pts/retrospective)
 - 98-100% NPV at primary and neck if FDG-PET negative after IMRT
 - Limited primary tumor specificity

- Stanford (103 pts/retrospective)
 - 96-97% NPV overall
 - Scanning >1 month post XRT improved sensitivity and NPV

- What is the optimal timing for post XRT PET imaging?

MDACC H&N PET/CT Trial—Prospective Response Assessment

- 59 patients → 6 responders (A)
- 52 patients → 72 clinically evaluated
 - 16 neck dissections
 - 2 lymph *primary or salvage*
 - 4 primary failures
 - 4 primary and nodal failures
 - 6 responders
 - 0 non-responders
 - 80 responders
 - 2 non-responders

Mueller B, et. al. Submitted

MDACC H&N PET/CT Trial—Pre-XRT vs. Post-XRT SUV

- Pre-treatment
- Post-treatment

\[p < 0.001 \]

Moeller B, et. al.
MDACC H&N PET/CT Trial—
Restaging Accuracy

Moeller B, et. al. Submitted

MDACC H&N PET/CT Trial—
“Risk-Stratified” PET-CT Assessment

High Risk
- HPV-negative
 - OR -
- Non-OP primary
 - OR -
- Tobacco user

Low Risk
- HPV-positive
 - OR -
- OP primary
 - AND -
- Tobacco non-user

Schwartz D, Macapinlac H, Weber R

J Natl Cancer Inst 100:688-9 [2008]

SUV Standardization Issues

- PET instrumentation/reconstruction parameter standards
- ROI delineation standards
- Partial volume/attenuation correction standards
- Time of SUV determination relative to injection
- Body mass/plasma glucose SUV corrections
- Patient/disease stage selection issues
- PET/CT central review/QA process?

PET/CT—Settling Into a Mature Niche

- Refinement of PET/CT Tumor Localization
 - What will be our gold standard?

- Refinement of PET/CT’s Diagnostic Role
 - Interactions with other tests
 - Interactions with other clinical risk factors
 - Individualize targeted therapy?

- Does PET/CT truly improve treatment results?

H&N Case Examples

“Useful” FDG-PET/CT GTV
- Stage III Tonsil CA

“Equivocal” FDG-PET/CT GTV
- Stage III Base of Tongue CA
“Equivocal” FDG-PET/CT N Staging

- Stage II High Grade True Vocal Cord CA

 SUV = 3.1

Mixed False +/- True + Staging

- Stage III Tonsil CA and…

Incidental Thyroid Screening

- Stage IVa Tonsil CA and…

Incidental Parotid/Lung Screening

- Stage III Larynx CA and…
Incidental H&N Primary

- Follow-up for resected Stage II lung adenocarcinoma

Future Directions

- Phase III trial comparing chemoXRT +/− C225 EGFR blockade
- First treatment Phase III with PET/CT outcomes (NCI/CMS/FDA)
 - Post-treatment neck response staging accuracy
 - Pretreatment chemoXRT primary tumor and nodal SUV_{max} & outcomes
 - Post hoc PET/CT image processing analysis

RTOG 0522

- Phase III trial comparing chemoXRT +/− C225 EGFR blockade
- First treatment Phase III with PET/CT outcomes (NCI/CMS/FDA)
 - Post-treatment neck response staging accuracy
 - Pretreatment chemoXRT primary tumor and nodal SUV_{max} & outcomes
 - Post hoc PET/CT image processing analysis

National Oncologic PET Registry

- Prospective collection of clinical/imaging data for candidate indications, in exchange for CMS reimbursement
- Opened in 2006
- Pilot publication
 - 22,975 cases from 1,178 centers
 - PET/CT altered management in 36.5% of cases

Hillner B, et. al. *J Clin Oncol* [2008]
Novel Non-FDG Tracers

- **Amino Acids**
 - O-(2-18F-fluoroethyl)-L-tyrosine (FET)
 - L-3-[18F]-fluoro-L-phenylalanine (FDOPA)
 - 3,4-dihydroxy-L-3-[18F]-fluoro-L-phenylalanine (FDOPA)

- **Lipids**
 - 18F-fluorocholine (FCH)
 - 18F-fluoroacetate

- 18F-16α-17β-fluoroestradiol (FES)
- 3’-deoxy-3’-18F-fluorothymidine (FLT)
- 18F-fluoromisonodazole (FMISO)

Acknowledgements

- Benjamin Moeller, MD, PhD
- Vishal Rana, MD, MPH
- Homer Macapinlac, MD
- Donald Podoloff, MD
- Osama Mawlawi, PhD
- Randal Weber, MD
- Kian Ang, MD, PhD
- Erich Sturgis, MD, MPH
- Tom Schellenberger, MD
- Michelle Williams, MD
- Adel El-Naggar, MD
- Lawrence Ginsberg, MD

MDACC H&N SPORE
VA MERIT