Management of Moving Targets in Radiotherapy

Steve B. Jiang, Ph.D.

Department of Radiation Oncology

jiang.steve@mgh.harvard.edu http://gray.mgh.harvard.edu/
A Simplified View of the RT Process

➢ Treatment preparation
 - Treatment simulation
 □ Build a virtual patient model (reference geometry)
 - Treatment planning
 □ Perform virtual treatment using virtual machine on virtual patient

➢ Treatment execution
 - Patient positioning
 □ Reproduce the reference geometry acquired through treatment simulation and used for treatment planning
 - Treatment delivery
 □ Maintain the reference geometry
There should be a consistency in the patient geometry throughout the whole treatment course.

How to keep the patient geometry close to the reference model in the machine coordinate system, or how to update the model to accommodate the changing patient geometry, are exactly the research topics of IGRT.
Two types of patient/organ motions: Inter- and intra-fractional motions

Figure Courtesy of Di Yan
Respiratory motion is both intra- and inter-fraction motion
Treatment Simulation of Mobile Tumors

- To build the reference patient/tumor model at the reference home position

- Errors in treatment simulation will influence all treatment fractions and should be handled carefully
Three Types of Motion Artifacts

- If CT scanning speed $<<$ tumor motion speed, \rightarrow smeared tumor image

- If CT scanning speed $>>$ tumor motion speed, \rightarrow tumor position and shape captured at an arbitrary breathing phase

- If CT scanning speed \sim tumor motion speed, \rightarrow tumor position and shape heavily distorted
Move Objects during CT

Courtesy of George T.Y. Chen
Motion Artifacts

Photo Static Moving / HS mode HQ

Courtesy of George T.Y. Chen
CT Artifacts in Patients

Helical light breathing scan 4DCT – 1 phase

Courtesy of Eike Rietzel and George T.Y. Chen
4D CT Scan

GE Lightspeed Scanner

Varian RPM system

Record amplitude and breathing phase for each slice
Resorting 500-1500 CT Slices

Courtesy of Eike Rietzel and George T.Y. Chen
4DCT Scan of A Phantom

Courtesy of Eike Rietzel and George T.Y. Chen
4DCT Scan of A Lung Tumor

Courtesy of Eike Rietzel and George T.Y. Chen
Defining the gating window

ungated

5 mm residual clip motion in SI direction

Chen et al., MGH 2004
Some Notes on 4D CT

- 4D CT scan not only reduces motion artifacts, but also gives the tumor/organ motion information.

- 4D CT scan is NOT really 4D.
 - Temporal information is mapped into one breathing cycle.
 - Irregular respiration will cause artifacts in 4D CT images.
 - Breath coaching is always needed.
Techniques for Treating Moving Tumor

Static Tumor

Moving Tumor No margin

Moving Tumor with margin

Moving Tumor Gating

© Steve B. Jiang

© Steve B. Jiang

© Steve B. Jiang

© Steve B. Jiang
“Margin” Techniques for Mobile Tumors

- Patient population-based CTV-PTV margin
- Patient specific CTV-PTV margin
 - measured for a specific patient through fluoroscopy or 4D CT scan
- ITV based on 4D CT or slow CT scan
- IMRT optimization using motion PDF
 - The more patient specific motion information is used, the more accurate motion “margin” results. However such info can vary during the treatment course.
Current Status of MLC Tracking

- Various algorithm development work
 - MCV, MGH, Indiana Univ, Steve Webb, etc

- MCV implementation
 - Leaf motion based on real time tumor position

- MGH implementation
 - Synchronized Moving Aperture Radiation Therapy (SMART)

- May have a role in SBRT (efficiency)

- Precise localization of tumor position in real time is required
SMART: Planning/Simulation

Measure average tumor trajectory (ATT)

IMRT inverse planning using CT data at a particular breathing phase
SMART: Include tumor motion into IMRT MLC leaf sequence
SMART: Treatment Delivery

- Monitor tumor motion
- Synchronize the MLC motion with tumor motion
- Interrupt and restart the treatment when target motion differs from the simulated pattern
Two Types of Gating

- **Internal gating (fluoroscopic gating)**
 - Use internal tumor motion surrogates such as implanted fiducial markers to indicate tumor position
 - Mitsubishi/Hokkaido RTRT system

- **External gating (optical gating)**
 - Use external respiratory surrogates such as abdominal surface to derive tumor position
 - Varian RPM system
Real-Time Tumor Tracking System

- 4 sets diagnostic X-ray systems
- Motion tracking software
- Carbon fiber couch
- 2 mm gold marker inside/near tumor
- 1 mm detection accuracy
- 0.033 s time delay

Tumor Tracking System at Hokkaido University

Courtesy of H Shirato
Problems with Internal Gating

- **Invasiveness of the marker implantation procedure**
 - Might be acceptable for liver and other abdominal sites
 - Not for lung due to the risk of pneumothorax

- **Significant imaging dose may be required for fluoroscopic tracking**
Varian RPM System

Photos courtesy of P Keall
Problems with External Gating

- Uncertainties in deriving tumor position from external surrogates
 - The correlation between tumor position and external marker position can vary inter- and intra-fractionally.
Accurate External Gating

- During **treatment simulation**, the reference home position should be accurately measured, using techniques such as 4D CT.
- During **treatment planning**, the patient and tumor geometry at the reference home position should be used.
- During **patient setup**, the tumor daily home position should be matched to the reference home position.
- During the **treatment delivery**, the tumor home position should be maintained the same.
Key Components for Accurate External Gating

- Patient breath coaching
- 4D CT simulation
- Patient setup based on gated tumor image
- Treatment verification
Hardware Platform for MGH Gating Procedure

- Camera
- X-ray Tubes
- Marker Block
- Video Goggles
- Flat Panels
- EPID
Breath Coaching Using RPM System

- Audio instruction
- Visual feedback
- 5 volunteers with 6 sessions (free breathing vs coached breathing)
- ~ 30 patients with one session (free breathing vs coached breathing)

A New Breath Coaching Protocol

Free breathing

Coached breathing

Gated Radiograph for Patient Setup

AP
Each radiograph requires ~1/5 dose of film

LAT
Gated Radiograph for Patient Setup

Future Development of Gated Radiotherapy

- Combine external and internal signals
 - More accurate than external gating
 - Less imaging dose than internal gating
- Lung treatment without implanted markers
- Issues with gated IMRT
Combine External/Internal Signals

- External gating, internal verification
 - Dynamically display tumor positions in the gating window, detected in x-ray images

- Double gating
 - External signal \rightarrow imaging \rightarrow tumor position \rightarrow linac

- Hybrid gating
 - Drive tumor positions from external surrogates
 - Low frequency updating of external/internal correlation
Gating Directly Based on Tumor Mass

Patient Setup:
- Training Fluoroscopic Images
- Motion Enhanced Images
- Reference Templates

Treatment:
- Incoming New Images
- Motion Enhanced Images
- Template Matching and Scoring
- Gating Signal

Multiple-Template Based Tracking

Y Cui, J Dy, GC Sharp, and SB Jiang, 2006.
Tracking with Deformation

Issues with Gated IMRT

➤ Treatment verification

➤ Treatment time
 - May not be a problem for Step and Shoot

➤ Biased beam-on time in the gating window
Acknowledgement

- MGH
 - George Chen, Ross Berbeco, Greg Sharp, Toni Neicu, Lily Tang, John Wolfgang, Noah Choi, et al

- Varian
 - Hassan Mostafavi, Andrew Jeung, et al