Intra-operative radiation therapy (IORT)

Gilad Cohen, M.S. and Marco Zaider, Ph.D.
Department of Medical Physics
MSKCC, New York
IORT refers to a single-fraction treatment delivered to a surgically exposed area

- Electron beam (not discussed here)
- High dose-rate (HDR) Ir-192 afterloader
Advantages:

• The treatment is performed at the time of surgery, when the target area (the tumor bed) is exposed and the applicator can be placed directly over the target.

• Organs at risk may be retracted and shielded as necessary.

• The applicator can be used in virtually any anatomic location (e.g. treatment of colorectal malignancies where the tumor bed is often inaccessible to the cones of a linac based system).

• Avoids cold spots and hot spots often encountered when using the electron beam approach due to angle of beam incidence and field matching.

• Convenience and cost effectiveness.
Afterloading devices:

- Gammamed (Varian Medical Systems, Inc)
- VariSource (Varian Medical Systems, Inc)
- Nucletron, BV
The Harrison-Anderson-Mick applicator (has FDA 510K approval)

- 130-cm source guides embedded at 1-cm spacing in 8-mm thick silastic rubber
- 5 mm from the center of catheter to front, and 3 mm to back (to gain flexibility)
- 2 to 24 catheters
- 22-cm long (can treat up to 20x23 cm²)
- Prescription point 1 cm away from source plane (0.5 cm from the surface)
Mick Radionuclear Instruments, Mt. Vernon, NY
Modified breast HAM
(Mick Radionuclear Instruments)

2-cm total thickness

Prescription at 2 cm from the source plane
IORT prescription:

• Physicist takes oral (rather than written prescription)
• Prescription details should be repeated by physicist and confirmed by physician
• Prescription includes: number of channels (width), length (number of stopping positions), dose and prescription point(s).
Treatment planning: Prescription / worksheet

<table>
<thead>
<tr>
<th>Treatment Channels (Chₐ, Gv)</th>
<th>GammaMed</th>
<th>Treatment positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1 = distal (tip of catheter), n = proximal</td>
</tr>
</tbody>
</table>

- Treatment Channels (Chₐ, Gv)
- GammaMed
- Treatment positions

1 = distal (tip of catheter), n = proximal
IORT Dose specification

Usually, homogeneous dose is desired throughout the treatment area.

Dose ranges between 15 - 20 Gy at 5 mm in tissue.

Lower dose for pediatric cases: 7.5 -12.5 Gy

Lower dose also used if IORT is combined w/ EBRT: 10 -12.5 Gy

Breast IORT: 20 Gy at 1 cm in tissue

Higher dose prescription has been reported in the literature (30 Gy for biliary / hepatic treatments)

Occasionally, non-uniform dose and irregular treatment geometry may be specified.
Treatment planning: Standard Geometry

Template type: IORT H.A.M. - Flat geometry
Offset to first pos.: 0.00 cm
Source travel path: 4.00 cm
Dose ref. line length: 4.00 cm
Points per ref. line: 5
Dose for interior: 10.00 Gy
Stepping distance: 1.00 cm
Treatment planning: Standard Plane
Treatment planning: Breast IORT
Treatment planning: Breast IORT
QA Considerations
Applicator QA

Prior to sterilization: catheter length and integrity, labels

After treatment: applicator integrity

Insure that sterilization does not damage the applicator
QA: Computer Assisted Independent Dose Calculation and Verification

- Input treatment parameters
- Confirm Pt ID, Rx dose, tx site, etc

- 1 Ch # < 19 → yes: vaginal cylinder → yes
 - no: 1 Ch # > 20 → yes: bronchial catheter → yes
 - no: 2 Ch → yes: GYN ring & tandem → yes
 - no: > 2 Ch → yes: HAM IORT

Reconstruct geometry and calculate dose to reference point(s)
The total air kerma strength, S_k, needed to deliver dose D at distance h over time t is given by:

$$S_k = \frac{D(Gy)}{10} \cdot \frac{1}{t_{\text{eff}}(h)} \cdot M \left[A \left(\frac{0.5}{h} \right)^2, 0.5 \right] \left(\frac{h}{0.5} \right)^2 \text{ElongationFact}$$

where:

$$t_{\text{eff}} = \frac{T_{1/2}}{\ln(2)} \left[1 - e^{-\frac{\ln(2)}{T_{1/2}} t} \right]$$

and in the case of HDR, the nominal treatment time (s):

$$T = 0.0659 \cdot M \left[A \left(\frac{0.5}{h} \right)^2, 0.5 \right] \left(\frac{h}{0.5} \right)^2 \exp(0.05[E - 1]^{3/4})$$
Table 1. Manchester System planar implant tables for source strength given either as (equivalent) mass of radium or as air kerma strength. *

<table>
<thead>
<tr>
<th>Area (cm²)</th>
<th>Cumulated source strength to produce 1000 cGy in water</th>
<th>IRAK (cGy cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Milligram hours</td>
<td>IRAK (cGy cm²)</td>
</tr>
<tr>
<td>0</td>
<td>31</td>
<td>227</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>733</td>
</tr>
<tr>
<td>4</td>
<td>147</td>
<td>1065</td>
</tr>
<tr>
<td>6</td>
<td>185</td>
<td>1337</td>
</tr>
<tr>
<td>8</td>
<td>215</td>
<td>1556</td>
</tr>
<tr>
<td>10</td>
<td>246</td>
<td>1775</td>
</tr>
<tr>
<td>12</td>
<td>273</td>
<td>1972</td>
</tr>
<tr>
<td>14</td>
<td>301</td>
<td>2176</td>
</tr>
<tr>
<td>16</td>
<td>329</td>
<td>2380</td>
</tr>
<tr>
<td>18</td>
<td>358</td>
<td>2584</td>
</tr>
<tr>
<td>20</td>
<td>385</td>
<td>2780</td>
</tr>
<tr>
<td>22</td>
<td>411</td>
<td>2969</td>
</tr>
<tr>
<td>24</td>
<td>436</td>
<td>3150</td>
</tr>
<tr>
<td>26</td>
<td>462</td>
<td>3339</td>
</tr>
<tr>
<td>28</td>
<td>487</td>
<td>3521</td>
</tr>
<tr>
<td>30</td>
<td>512</td>
<td>3702</td>
</tr>
<tr>
<td>32</td>
<td>536</td>
<td>3876</td>
</tr>
<tr>
<td>34</td>
<td>561</td>
<td>4057</td>
</tr>
<tr>
<td>36</td>
<td>583</td>
<td>4216</td>
</tr>
<tr>
<td>38</td>
<td>607</td>
<td>4389</td>
</tr>
<tr>
<td>40</td>
<td>630</td>
<td>4556</td>
</tr>
<tr>
<td>42</td>
<td>652</td>
<td>4714</td>
</tr>
<tr>
<td>44</td>
<td>673</td>
<td>4865</td>
</tr>
<tr>
<td>46</td>
<td>695</td>
<td>5024</td>
</tr>
<tr>
<td>48</td>
<td>716</td>
<td>5175</td>
</tr>
<tr>
<td>50</td>
<td>737</td>
<td>5326</td>
</tr>
<tr>
<td>52</td>
<td>758</td>
<td>5477</td>
</tr>
<tr>
<td>54</td>
<td>778</td>
<td>5621</td>
</tr>
<tr>
<td>56</td>
<td>797</td>
<td>5757</td>
</tr>
</tbody>
</table>
Other precautions:

Remote monitoring of patient and anesthesia equipment
OR stuff remain scrubbed during treatment in case of emergency
In case of emergency the patient can not leave the OR; instead, a shielded enclosure should be provided for the afterloader and source
Personnel requirements

- Physician, Therapist, and two Physicists
- Be aware of the unpredictable timing of IORT
How much it costs:

Initial investment:

✓ shielding (with assoc. structure) 250K
✓ after-loader 200K
✓ planning software 30-50K
✓ applicators (capital investment) up to 25K ea
Running costs:

- Source change + PMI: $12K quarterly
- HAM applicator: ~$100. / ch

With an average of five channels / treatment and one IORT procedure / week, cost / procedure excluding initial investment is roughly $1500.