Image Quality assessment in digital X-ray detection systems

AAPM 2004 Summer School

Pittsburgh PA 29 July – 1 August

31-07-2004 Tom Bruijns / Dick Stueve

Philips Medical Systems

Outline

- Introduction
- Technologies in Rad and RF
- Performance Characteristics
- IQ assessment
- IQ design: a system approach
- Summary
- Evening session QC tools 19:00-21:00

Overview Digital Technologies

Neitzel

Overview Digital Technologies

CR in 1983

~ 10-20x reduction in size and price

CR in 2004

Product range overview Digital Technologies

Rad systems:

- Thoravision (selenium drum)
- Computed Radiography
- Flat Detector technology

RF systems

- IITV technology (CCD based)
- Flat detector to come

CV systems

- IITV technology (CCD based)
- Flat Detector technology

Product range overview Digital Technologies

Rad systems:

- Thoravision
- Computed Radiography
- Flat Detector technology

RF systems

- IITV technology (CCD based)
- Flat detector to come

CV systems

- IITV technology (CCD based)
- Flat Detector technology

- Introduction
- Technologies in Rad and RF
- Performance Characteristics
- IQ assessment
- IQ design: a system approach
- Summary
- Evening session QC tools

Flat Detector technology in Digital Radiography

CR and DR

Frost & Sullivan

CR:

- DQE will increase
- Line scan

CR will coexist next to DR for many years

Trixell Moirans France

European Consortium Thales, Philips, Siemens

Products Static & Dynamic Flat x-ray Detectors (FD)

Flat Detector Technology

Large area (43 cm x 43 cm) 9 Mpixel Flat Detector

- For radiographic applications
- Cesium Iodide scintillator (600 µm)
- Amorphous silicon photodiode array
- Array size: 43 cm x 43 cm
- Pixel size: 143 µm
- Bit depth:14 bits
- Image matrix: 3k x 3k
- Low noise electronics
- High sensitivity

5 Mpixel Dynamic Flat Detector

- For vascular (and RF) applications
- Cesium Iodide scintillator (550 µm)
- Amorphous silicon photodiode array
- Array size: 30 cm x 40 cm
- Pixel size: 154 µm
- Bit depth:14 bits
- Image matrix: 2.5 k x 2 k
- Low noise electronics
- High sensitivity

- 1 Mpixel Dynamic Flat Detector
- For cardio and vascular applications
- Cesium Iodide scintillator (550 µm)
- Amorphous silicon photodiode array
- Array size: 18 cm x 18 cm
- Pixel size: 184 µm
- Bit depth:14 bits
- Image matrix: 1 k x 1 k
- Low noise electronics
- High sensitivity

CCD based IITV technology for RF applications

CCD based IITV technology for RF applications

- Used for dynamic applications
- II: Cesium Iodide scintillator
- II size: 38 cm diameter
- Up to 5 zoom fields
- CCD Pixel size: 12,8 µm
- CCD Full well capacity: 170 ke⁻
- CCD read out noise 40 e-
- Bit depth:12 bits
- Image matrix: 1024²

FD technology versus CCD based IITV technology for RF applications

- + No vignetting & no distorsion for FD
- + High resolution + coverage
- + High DQE for FD
- + Flat
- Price level high for FD

- Introduction
- Technologies in Rad and RF
- Performance Characteristics
- IQ assessment
- IQ design: a system approach
- Summary
- Evening session QC tools

Neitzel, Malmö 2004

Large area (43 cm x 43 cm) 9 Mpixel Flat Detector

- For radiographic applications

Low noise

- Cesium lodide scintillator (600 μ m)
- Amorphous silicon photodiode array
- Array size: 43 cm x 43 cm
- Pixel size: 143 µm
- Bit depth:14 bits
- Image matrix: 3k x 3k
 Low noise electronics
 High X-ray sensitivity

Large area (43 cm x 43 cm) 9 Mpixel Flat Detector

- For radiographic applications
 Cesium Iodide scintillator (600 µm)
 Amorphous silicon photodiode array
- Array size: 43 cm x 43 cm
- Pixel size: 143 µm
 Bit depth:14 bits
 - Image matrix: 3k x 3k
 - Low noise electronics
 - High sensitivity

CCD based IITV technology for RF applications

- For dynamic applications
- II: Cesium Iodide scintillator
- Il size: 38 cm diameter
- Up to 5 zoom fields
- CCD Pixel size: 12,8 μm/
 CCD: Full well capacity: 170 ke⁻
 Low dark noise 40 e⁻
 - Bit depth:12 bits
 - Image matrix: 1024²

PHILIPS

1 ave

CCD based IITV technology for RF applications

Resolution - For dynamic applications (and coverage) - II: Cesium Iodide se - II size: 38 cm diameter - Up to 5 zoom fields CCD Pixel size: 12,8 µm PHILIPS CCD Full well capacity: 170 120 Bit depth:12 bits Image matrix: 1024² -

- Introduction
- Technologies in Rad and RF
- Performance Characteristics
- IQ assessment
- IQ design: a system approach
- Summary
- Evening session QC tools

Detective Quantum Efficiency

$$DQE(f) = G^2 \cdot \frac{MTF^2(f) \cdot X}{NPS(f) \cdot q},$$

The detective quantum efficiency (DQE) is considered to be the fundamental performance parameter of digital Xray detectors.

There are many ways to come to many different answers

Detective Quantum Efficiency

Working group FD (DR) IEC standard 62220-1

Detective Quantum Efficiency

Neitzel, Günther-Kohfall, Borasi, Samei Medical Physics August 2004

Linking DQE and observer tests

DQE versus EAK for dynamic 30x40 FD and IITV

Observation tests (using Treshold Contrast Detail Detectability)

Observation tests IITV (L) and FD (R)

Observation tests IITV and FD

EAK [nGy]

- Introduction
- Technologies in Rad and RF
- Performance Characteristics
- IQ assessment
- IQ design: a system approach
- Summary
- Evening session QC tools

Rationale of Image Quality (IQ) Model (Kroon)

- IQ analysis of (non-)existing systems
 - system (de)composition for design process
 - comparison of present versus future systems
- Fast acquisition of IQ characteristics
 - optimization requires extensive data amount
 - simulation (seconds) versus experiment (hours-days)
- Various IQ related studies
 - design of test objects and methods

Objectives of Image Quality (IQ) Model

- Combines the IQ requirements of components into system level IQ specification
- All IQ main items are analyzed simultaneously, leading to a.o. DQE
- Permits tolerance and parameter studies
- Allows optimisation and prevents sub-optimisation
- Design of test objects & methods

Image Quality Model Main Items

- spectrum, dose, AEC
- range and transfer
 - MTF of stationary object
- lur MTF of moving object

- Motion blur
- Noise

- Mixed

- dynamic & structure WS
- geometrics & cosmetics

Input \rightarrow Image Quality Model \rightarrow Output

- Model input:
 - Components
 - Configuration
 - Tuning
- IQ model:
 - Architecture
 - IP functions
- Model output
 - IQ descriptors

Image Quality Model Implementation

- PC with LabVIEW ®
- Visual programming
- Clear hierarchy
- IQ analysis << 1 sec
- 350 program parts
- About 300 variables for settings, UI and system definition

- Introduction
- Technologies in Rad and RF
- Performance Characteristics
- IQ assessment
- IQ design: a system approach
- Summary
- Evening session QC tools

Summary

We discussed:

- Products FD and IITV and their proporties
- DQE and the present limitations
- DQE versus observation tests
- IQ modeling for fully optimized system IQ

- STRONG OR WEAK SYSTEM CHARACTER -

Thank you for your attention See you this evening at our booth for the session "QC tools"

