Extending DICOM to integrated information environments: IHE

Steven C. Horii, MD, FACR, FSCAR Department of Radiology University of Pennsylvania Medical Center

Disclosure

- Receive royalties from SPIE for a book I co-edited
- Member of an advisory board for Stentor
- Have consulted for: Memorial Hospital, Hollywood, FL, and Delnor Hospital, Geneva, IL

Introduction

- DICOM and imaging
- Replacing film with PACS
- What is wrong with the scenario?
- Going beyond DICOM
- IHE impact: workflow problems

Introduction

- The IHE Profiles: examples
- How IHE grows
- What is on the IHE horizon
- Conclusion

DICOM and imaging

- DICOM has had a 20-year history of providing interface specifications for imaging equipment
- DICOM is one of the most successful standards in medical imaging

Replacing film with PACS

- The idea of early PACS implementers:
 - Made practical with low-cost computers, displays, and storage
 - The challenge was engineering: how to get needed performance with available hardware

Replacing film with PACS: what is wrong with this scenario?

- Analysis of the "old way"
- What happens if we "plug-in" PACS to replace the film-based functions?

Replacing film with PACS: what do you gain?

- Eliminate (or nearly so) purchasing film and processing chemistry
- Remove most film processors
- Eliminate waste water problem
- Reduce film library personnel requirements
- Images are available in multiple locations

Replacing film with PACS: what do you gain:

- Reliable, fast archive
- Improved workflow?
 - Let's look at this more closely
 - What actually happens in a radiology department or practice?

The "old way" film and paper (but with information systems)

- Analysis shows a LARGE number of manual steps and interactions with different systems
 - —In our study, 32 steps (with a RIS, HIS, and PACS but not integrated)
 - In Dr. Siegel's study, 59 steps (assuming no RIS or PACS)

The "old way" film and paper (but with information systems)

- Each step is a potential delay point and any manual data entry operation is a potential error source
 - As a side study of research we did, technologist data entry can have error rates as high as 20%

What is wrong with this scenario?

- The whole process typically takes from 1-3 days
- Emergency requests require effort on the part of the requesting physician

What is wrong with this scenario?

- There are multiple points of potential error or failure (e.g., patient is transferred; the report is printed on the wrong floor)
- The process imposes workload on personnel

What happens if we simply replace film with PACS?

- Do we improve workflow?
- What have we done to solve the problems that film creates?
- What new problems have we made for ourselves?

Examples of workflow impact

- Study of x-ray technologist tasks pre- and post PACS
- Study of ultrasound sonographer task times

X-Ray technologist task comparisons

 Our studies have shown an approximate 50% increase in technologist time (general radiography) AFTER PACS implementation

X-Ray technologist task comparisons

- Reasons for increased time:
 - Increased interaction with information systems
 - Very lengthy process for correcting mistakes
 - Queues for QA workstations (we created this problem)

Study of ultrasound sonographer task times

- Sonographers spend approximately 5 minutes (median time) interacting with the RIS and entering patient data for each patient
- For a 20,000 patient per year section, that 5 minutes per sonographer is equal to 69 person DAYS per year!

Why doesn't DICOM solve these problems?

 DICOM primarily addresses the communication of images and associated information between imaging equipment and other devices

Why doesn't DICOM solve these problems?

 DICOM does not address what happens in other health information systems that affects PACS and vice versa

Enter IHE: Integrating the Healthcare Enterprise

 1997 – 1999: the Radiological Society of North America (RSNA) and the Healthcare Information and Management Systems Society (HIMSS) decide to collaborate

IHE

- The scope is to address the clinical scenarios underlying the interaction of PACS with other information systems (IS)
- DICOM is the standard widely used by PACS vendors
- HL7 is the ubiquitous healthcare IS standard

What does IHE do?

- Develops the clinical scenarios and information models to support them
- Determines the features of DICOM and HL7 needed to support the information models
- The resulting profiles are demonstrated at RSNA and HIMSS meetings

What doesn't IHE do?

- IHE is NOT a standards developing organization;
- It fully makes use of the DICOM and HL7 standards, but does not (in itself) extend or modify those standards

How can IHE help solve these problems?

- When we re-examine our ultrasound ordering scenario but this time assuming the IHE Scheduled Workflow Profile has been implemented:
 - Step count is reduced to 9
 - Technologist workflow bottlenecks are eliminated

IHE Scheduled Workflow

- A major foundation for the IHE Profiles
- Supports the transactions and communications between HIS, RIS, and PACS
- Uses existing standards

Impact of Scheduled Workflow

 When we implemented just part of Scheduled Workflow, the 50% increase in technologist time became a reduction in technologist time (about 15%) compared to film

Scenario two: "Crash in the ER"

- An unconscious patient is brought into the ER
- The patient clearly needs multiple studies
- Scenario two: "Crash in the ER"
- So, how do the imaging studies (and laboratory studies) get done if the patient's name and any record number he has are unknown?
- In the past, we did these with "trauma patient" as a name and a sequential, nonrepeating ID

Scenario two: "Crash in the ER"

- The problem is not doing the studies, but how to reconcile them afterwards once the patient's name IS known.
- Otherwise, the studies may be "invisible" to the rest of the record.

How does the IHE help this situation?

- The Patient Information Reconciliation Profile is designed to fix exactly this problem.
- Interactions between the PACS, HIS, and RIS allow for after-the-fact record matching and updating.

Scenario three: "My monitors all look different!"

- With film, the same image was seen by the radiologist and other physicians
- With workstations, image display is distributed and is heavily influenced by the local monitor setup

Scenario three: "My monitors all look different!"

- The DICOM Grayscale Display Function Standard was developed to address this problem
- The IHE Consistent Presentation of Images Profile expands on this and also adds DICOM Presentation State Storage

IHE and consistent displays

- The DICOM Presentation State Storage Service Class allows for storage of information about how the image was displayed and viewed along with the image
- The goal: have consistent image displays throughout an enterprise

Scenario four: "You sent me an MRI with a thousand images!"

- With a large number of images in an examination; which are relevant to the clinical problem?
- Many physicians use the images to consult with the patients; which ones should they show?

IHE and key images

- The IHE Key Image Note Profile supports the flagging of particular images in an examination as significant
- A note may be linked to these images
 - Explaining a finding
 - Posing a question to a consultant

Scenario five: "We scanned the patient head-to-pelvis; who will read these?"

- A "single" CT study (from the head through the pelvis) is to be read by three different radiologists (neuroradiology, chest, abdominal imaging)
- We can't ask technologists to start and end three separate examinations!

IHE and Presentation of Grouped Procedures

- The IHE Presentation of Grouped Procedures Profile addresses this clinical problem
- It allows a single examination to be broken up virtually into component examinations

Scenario six: "Why do I have to access PACS for images and the RIS for reports?"

- Though many PACS support reports along with examinations, there is no link between the reports and the images
- If the radiologist does not provide a reference, it is left to the referring physician to link them

IHE and reports

 The IHE Simple Image and Numeric Report Profile is designed to be a first step towards integrated, structured reports

Scenario seven: "Why can't I get radiology information from all our systems?"

- Referring physicians have to interact with multiple systems
- Radiology (like laboratory systems) is ubiquitous in healthcare
- Why should the physician have to access separate systems?

IHE and access to radiology information

 The IHE Access to Radiology Information Profile supports a number of query transactions designed to allow disparate systems to access radiology images and reports in a consistent manner

Scenario eight: "We did the study, how do we get paid for it?"

- Sometimes part of an HIS, more often another IS is a billing system
- Detailed information about the examination is in the PACS and RIS

IHE and Charge Posting

 Makes the information that resides in PACS and RIS necessary for billing systems available to them

Scenario nine: "How does IHE address HIPAA security?"

- We are now required to provide security for medical records
- We have to restrict access to such records, yet provide the information when legitimately needed

IHE and Basic Security

- Provides the first level of a security infrastructure
 - Manages cross-node security
 - Provides for consolidation of audit trails

Scenario ten: "How do I get workflow into CAD and 3D reconstruction?"

 Increasing use of CAD systems and 3D and 4D workstations requires that they be able to employ the same workflow information that a PACS has

IHE and Post-processing Workflow

 This IHE profile extends the basic scheduled workflow profile to support the additional steps such as CAD and 3D reconstruction

The value of IHE

- We don't gain from PACS unless we can be more productive
- We need automation to be more productive
- The IHE Profiles provide tools to support the replacement of manual steps

How the IHE effort grows

- Domain-specific planning and technical committees (represent users and vendors)
- Partnerships with other US and international (Europe, Asia) standards and medical informatics groups

How the IHE effort grows

- Strategic Development Committee (formed in 2002)
 - Expand the IHE process to meet the integration needs of the entire healthcare enterprise
 - Engage experts from other key domains
 - Identify integration needs, possible barriers and problems, and potential solutions across domains

What's on the IHE horizon?

- IT Infrastructure Committee
 - Electronic master patient index
 - Query/Display
 - Synchronized patient views
 - Advanced security
- Primarily led by HIMSS

What's on the IHE horizon?

- Expansion into other domains, e.g.,
 - Cardiology
 - Laboratory
 - Pharmacy/medication management
 - Clinical engineering

Where to find out more

- www.rsna.org/ihe
- Start with the IHE Primer
- All of the current, and most historical, documents can be downloaded as PDFs

Conclusion

- IHE is bringing together manufacturers of different clinical information systems, much as DICOM did for imaging equipment
- The potential for IHE to improve productivity and reduce errors is very great

Conclusion

 Some aspects of IHE, already in operation, are having an impact on workflow now

Acknowledgement

 Some of the work reported (technologist task time) was supported in part by NIH NCI Program Project Grant P01-CA53141