Basic Film Dosimetry

Indra J. Das University of Pennsylvania, Philadelphia, PA

Chee-Wai Cheng Arizona Oncology Center, Tucson, AZ

Sujatha Pai State University of New York, Stony Brook, NY

Basic Film Dosimetry

What is a film? Why to use film ? How to use film? Where to use film?

Historical Perspective

1994	3M	Dry process laser imaging
1983	Fuji	Computed radiography system
1972	Kodak	XTL and XV film for therapy
1965	Kodak	Rapid film processing
1960	Dupont	Polyester base introduced
1942	Pako	Automatic film processor
1933	Dupont	X-ray film with blue base
1918	Kodak	Double emulsion film
1913	Kodak	Film on Cellulose nitrate base
1896	Carl Schlussner	First glass plate for radiography
1895	Roentgen	First Radiograph
1890	Hurter &Driffield	Defined the term optical density
1889	Eastman Kodak	Cellulose nitrate base for emulsion
1836	J. M. Daguerre	Concept of developer
1826	Joseph Niepce	First Photograph

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header><section-header><list-item><list-item><list-item><section-header>

Radiochromic Film

Niroomand-Rad et al, Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task group 55, Med. Phys. 25(11), 2093-2115, 1998

Das/Cheng/Pai/AAPM//2002

Photographic Process

- &Silver halides (AgBr, AgCl, AgI) are sensitive to radiation.
- &Radiation event (latent image) can be magnified by a billion fold (10⁹) with developer.

Emulsion of Film/Radiograph

The heart of film is emulsion which contains grains (crystals of silver halides) in gelatin

Gelatin is suitable due to

- it keeps grains well dispersed
- it prevents clumping and sedimentation of grains
- it protects the unexposed grains from reduction by a developer
- it allows easy processing of exposed grains
- it is neutral to the grains in terms of fogging, loss of sensitivity

Electron micrograph of grain in gelatin

Film Processing

CDeveloping [(Metol; methyl-p-aminophenol sulphate or Phenidone; 1phenol 3pyrazolidone)]

 Converts all Ag⁺ atoms to Ag. The latent image Ag ⁺ are developed much more rapidly.

&Stop Bath

 dilute acetic acid stops all reaction and further development

&Fixer, Hypo (Sodium Thiosulphate)

it dissolves all undeveloped grains.

&Washing

&Drying

as/Cheng/Pai/AAPM//2002

- ♂The change which causes the grains to be rendered developable on exposure is considered to be the formation of latent image.
- &It is composed of an aggregate of a few silver atoms (4-10).
- Con average 1000 Ag atoms are formed per xray quantum absorbed in a grain.
- & Gurney & Mott provided a clear picture of latent image

Ref. Herz, 1969

Film Optim	um Dose	Gamma	Latitude
CEA TVS	60	4.4	0.35
CEA TLF	19	3.6	0.4
Agfa Ortho STG2	4.7	3.6	0.4
Agfa HTA	3.5	2.7	0.3
Agfa RP1	1.5	2.6	0.5
Agfa MR3	4.2	2.1	0.6
Du Pont UV	1.5	1.9	0.5
Fuji MIMA	6.3	2.8	0.5
Fuji HRG	6.2	2.8	0.5
Kodak XV			
Kodak TL			
Kodak XL			
Kodak MinR			
Kodak TMATG			
Kodak Ortho	4.5	2.3	0.4
Konica MGH	5.0	2.7	0.4

Das/Cheng/Pai/AAPM//2

Optical Density = $OD(D, Dr, E, T, d, FS, \Theta)$

D = Dose

- Dr = Dose rate
- E = Energy
- T = type of radiation (x-rays, electrons etc)
- d = depth of measurement
- FS= Field Size
- Θ = Orientation: parallel or perpendicular

Film Dosimetry in therapy

- \mathcal{C} 1954, Granke et al; tissue dose studies with 2 MV x-rays
- &1969, Dutreix et al; highlights of the problems in film dosimetry
- &1981, Williamson et al; Provided solution to the film dosimetry problems
- &1996, Cheng & Das; CEA film, better film for dosimetry
- &1997, Burch et al & Yeo et al; lateral scatter filtering

Das/Cheng/Pai/AAPM//2002

- ✤To eliminate air trapped inside jacket, vacuum packing could be used (CEA film).
- To keep identical position and pressure, RMI sells film cassettes for dosimetry.
- &Use film in water as suggested by van Battum et al, Radiother.Oncol. 34, 152, 1995
- &Special phantom; Bova, Med. Dos. 15, 83, 1990

as/Cheng/Pai/AAPM//200

OD Vs Dose

Dose = a+b(OD) + c(OD)^2

$$\label{eq:pdd} \begin{split} \hline \textbf{PDD} &= \left[a + b(\mathrm{OD}) + c(\mathrm{OD})^2\right]_d / \left[a + b(\mathrm{OD}) + c(\mathrm{OD})^2\right]_{max} \\ OAR &= \left[a + b(\mathrm{OD}) + c(\mathrm{OD})^2\right]_x / \left[a + b(\mathrm{OD}) + c(\mathrm{OD})^2\right]_{cax} \end{split}$$

For limited range and linear film D = m(OD) then

 $D_2/D_1 = OD_2/OD_1$

Sensitivity of film to scatter

&Depth and field size dependence of OD

&Van Battum et al, film in water

&Burch et al, lead filter

&Yeo et al , Lead filter

- &Skyes et al, against filter method
 - "although scatter filtering method appears to have the desired effect it seems intuitively wrong to introduce a high Z filter in order to make an inadequate dosimeter, film, behave as if it is water equivalent"
- &Suchowerska et al MC simulation to prove scatter as a problem

Advantage of film dosimetry

- &Unrivaled spatial distribution of dose or energy imparted.
- &Repeated reading of same film: permanent record
- &2-D distribution with single exposure

&Small detector size

&Wide availability: Kodak, Agfa, Fuji, Dupont, CEA &Large area dosimetry: Especially for electron beam

& Linearity of dose (over a short dose range, OD can be treated linear with dose for most films)

Film dosimetry - Concerns

S developer chemistry and temperature

High temperature & humidity creating fading

& Dose rate independence

&OD depends on:

as/Cheng/Pal/AAPM//2002

Film dosimetry - Concerns

& The main problem in using radiographic film is the dependence of optical density (OD) on:

- Strong energy dependence (high sensitivity to low energy photons due to photoelectric interactions in grains);
- Film plane orientation with respect to the beam direction;
- Emulsion differences amongst films of different batches, films of the same batch or even in the same film;
- Densitometer/Digitizer artifacts.

Storage stability
 0.05-0.1 OD in (6-60mR) among various films (ref Soleiman et al Med. Phy. 22, 1691, 1995)
 Microbiological growth in gelatin
 Solarization: At extremely higher doses, OD decreases

Chemical processing

9 Processing time

• drying conditions

TG69 - RADIOGRAPHIC FILM FOR MEGAVOLTAGE BEAM DOSIMETRY

&Film Dosimetry for commissioning and verifying special procedures in radiotherapy.

- Enhanced Dynamic Wedge (EDW)
- Stereotactic Radiosurgery (SRS)
- Intensity Modulated Radiotherapy (IMRT)

Disadvantage of film dosimetry & Chemical processing (except Gafchromic films)

OD depends on:

- 6 developer temperature
- I drying conditions

Strong energy dependence (high sensitivity to low energy photons due to photoelectric interactions in grains)

& Sensitivity to environments

- high temperature and humidity crating fading
- Storage stability

 0.05-0.1 OD in (6-60mR) among various films (ref Soleiman et al Med. Phy. 22, 1691, 1995)

& Microbiological growth in gelatin

& Solarization: at extremely higher doses, OD decreases

& Absolute dosimetry is difficult

Advantage of film dosimetry

& Unrivaled spatial distribution of dose or energy imparted.

- & Repeated reading of same film: permanent record
- &Wide availability: Kodak, Agfa, Fuji, Dupont, CEA etc.
- &Large area dosimetry: Especially for electron beam

&Linearity of dose (over a short dose range, OD can be treated linear with dose for most films)

&Dose rate independence

Das/Cheng/Pai/AAPM//2002

TG69 RADIOGRAPHIC FILM DOSIMETRY

Task group members: S. Pai -Chair

L. Reinstein – Co-Chair

J. Williamson J. Palta K. Lam T. Losasso E. Grein I. Das J. Dempsey A. Olch

Das/Cheng/Pai/AAPM//2002

TG69

& Film Dosimetry - Issues

- ✤ Film selection
- Film orientation
- Phantom choice
- Film handling
- Beam quality issues
- ✤ Film Processor
- Film Digitizer characteristics

The primary mission of the task group is to develop guidelines to allow optimal external beam dose measurements.

Das/Cheng/Pai/AAPM//

Radiochromic film

Niroomand-Rad et al, Radiochromic film dosimetry: Task group 55, Med. Phys. 25(11), 2093-2115, 1998

- Self developing, turns dark blue soon after irradiation
- Near tissue equivalent, > 0.1 MeV energy independent
- & OD increases gradually with time (logt)
- & Dependency on temperature during *and* post irradiation
- & Dependency on densitometer wavelength and temperature
- & Sensitivity may vary somewhat across film
- & Affected by compression, water/humidity, high temperature
- & Slightly reduced sensitivity at < 0.1MeV
- & OD increases in UV and fluorescent light

Processors

- & Using the newer automatic processors
 - Developer temperature
 - Processing time
 - ✤ Chemistry activity of the processor

held extremely stable to improve the reproducibility and the stability of the film density.

- & Development of recommendation for the processor acceptance tests and QA.
- & Determination of correction factors for temperature and chemical variations of the processors in general:
 - By processing the non-exposed films (known density films) intermixed with the experiment films and calibration films.

Densitometers/ Digitizers

&Visual type densitometer (Dobson, Griffith & Harrison, 1926)

&Photoelectric type

- light densitometer (wide spectrum)
 Standard: McBeth, Xrite, Nuclear Associate etc
- Light source coupled with CCD digitizer
 Fluorescent light source Vidar VXR-16 Digitizer
 - S LED light source Howtek MultiRAD 460 Digitizer
- Laser densitometer (single wavelength)
 Lumysis scanning system

Digitizers & Scanning film Digitizer Characteristics:

- ✤ Fast high resolution 2D scanners
- **S** Reflection densitometry limited OD range
- Spatial resolution
- **9** Pixel dimension 0.34 0.042mm (72-600 dpi)
- ✤ Dynamic range
 - **S** 0 to upper limit of 2.5 to 4.0 OD
- Scanner output
 - **9** OD measurement (\geq 12 bit ADC)
 - Transmission measurement and then converted to OD (>14 bit ADC)

TG69 - RADIOGRAPHIC FILM FOR MEGAVOLTAGE BEAM DOSIMETRY

Enhanced Dynamic Wedge

& Commissioning

EDW profiles are obtained in a single exposure using a multiple film loaded phantom *

& Concern: Energy Dependency of film

✤ Affects the measured wedge angle in EDW profiles for large field size and large depths.

TG69 - RADIOGRAPHIC FILM FOR MEGAVOLTAGE BEAM DOSIMETRY Stereotactic Radiosurgery & Energy Dependency Overall error of 1%- by using mid-way calibration for F.S. upto 10x10 cm² and depths of 2-10cm. &Output Factor Small field output depends upon the spatial resolution.

& Penumbra Delineation

Detector size; TG 42 specification- detector dimension of 2mm or less is recommended.

& Concern: Optical Scatter

Light transmission artifacts of the scanner contaminating the signal (penumbra broadening)

TG69 - RADIOGRAPHIC FILM FOR MEGAVOLTAGE BEAM DOSIMETRY

Intensity Modulated Radiation Treatment

& Film dosimetry - Best dosimeter to date &Spatial resolution

100 1

Detector size; detector dimension of 2mm or less is recommended.

& Concerns: Energy Dependency

Varying component of primary to scatter ratio within the field poses a big problem .

& Concerns: Spatial Distortion and Optical Scatter

- Scanner distortion which are most apparent in high dose gradient regions throughout IMRT field
 - Optical scatter distorting the transmitted signal

KODAK'S NEW EDR2 FILM

&No MU reduction is required for EDR2 film IMRT QA.

- Avoids Linac delivery problems with small number of MU per segment
- Avoids round off errors for systems that can not deliver non-integer MU
- ✤ IMRT QA can be performed on the IDENTICAL plan that is used to treat the patient.

&EDR2 film is less sensitive to processor variations than XV2 film.

TG69 - RADIOGRAPHIC FILM FOR MEGAVOLTAGE BEAM DOSIMETRY

TG Chapters: & Introduction and Background ----- S. Pai &; Characteristics of AgH films ----- I. Das & Film types and Processors ----- K. Lam & Detection Equipment Point Densitometers ----- A. Olch/L. E. Reinstein 2D scanners ----- J. Dempsey/J. Williamson & Phantom considerations and ----- E. Grein Film Calibration Protocol & Special Applications QA of photon/Electron beams ------ J. Palta IMRT/EDW/SRS ----- T. Lossaso

References

- [1] Attix, F.H. Introduction to Radiological Physics and Radiation Dosimetry. New York: John
- Attix, F.H. Introduction to Radiological Physics and Radional Activity of the second state of

- H87-1188, 1977.
 Beavis, A.W., Weston, S.J. and Whitton, V.J. Implementation of the Varian EDW into a commercial RTF system. Phys. Med. Biol. 41: 1691-704, 1996.
 Becker, K. Solid State Dosimetry. Boca Raton, FI: CRC Press; 1973.
 Bogueki, T.M., Murphy, W.R., Baker, C.W., Piazz, A.S. and Haus, A.G. Processor quality control in laser imaging systems. Med. Phys. 24: 581-584, 1997.
 Bos, L., Danciu, C., Cheng, C.W., et al., Inter-institutional variations of sensitometric curves of radiographic dosimetric films. Med. Phys. 29: (in press), 2002.
 Burch, S.E., Kearfott, K.J., Trueblood, J.H., et al. A new approach to film dosimetry for high energy photon beams. Lateral scattering filtering. Med. Phys. 24: 775-783, 1997.
 Butson, M.J., Cheung, T. and Yu, P.K. Spatial resolution of a stacked radiochromic film dosimetry. Revised 10: 0006 (J): N72-731 (2001)
- dosimeter, Radiother, Oncol. 61: N27-31, 2001.

-References

- [11] Butson, M.J., Cheung, T., Yu, P.K. and Metcalfe, P.E. Assessment of large single-fraction, low-energy X-ray dose with radiochromic film. Int. J. Radiat. Oncol. Biol. Phys. 46: 1071-1075, 2000.

- fraction, low-energy X-ray dose with radiochromic film. Int. J. Radiat. Oncol. Biol. Phys. 46: 1071-1075, 2000.
 Butson, M.J., Chcung, T. and Yu, P.K.N. Radiochromic film dosimetry in water phantoms. Phys. Med. Biol. 46: N27-N31, 2001.
 Butson, M.J., Mathur, J.N. and Metcalfe, P.E. Radiochromic film as a radiotherapy surface-dose detector. Phys. Med. Biol. 41: 1073-1078, 1996.
 Butson, M.J., Wathur, J.N. and Metcalfe, P.E. Effects of read-out light sources and ambient light on radiochromic film. Transfusion Medicine 9: 205-208, 1999.
 Butson, M.J., Yu, P.K. and Metcalfe, P.E. Effects of read-out light sources and ambient light on radiochromic film. Phys. Med. Biol. 43: 2407-2412, 1998.
 Butson, M.J., Yu, P.K. and Metcalfe, P.E. Effects of read-out light sources and ambient light on radiochromic film. Phys. Med. Biol. 43: 2647-2650, 1998.
 Cadman, P. Use of CEA TVS film for measuring high energy photon beam dose distributions. Med. Phys. 23: 1225-1231, 1996.
 Cheng, C.W. and Das, I.J. Dosimetry of high energy photon beam dose distributions. Med. Hys. 23: 1225-1231, 1996.
 Cheung, T., Butson, M. and Yu, P. Multilayer gafchromic film detectors for breast skin dose termination in vivo. Phys. Med. Biol. 41: N18-N37, 2002.
 Cheung, T., Butson, M.J. and Yu, P.K. Use of multiple layers of Gafchromic film to increase sensitivity. Phys. Med. Biol. 46: N235-N240, 2001.

-References

- [21] Cook, L.T., Insana, M.F., McFadden, M.A., Hall, T.J. and Cox, G.G. Comparison of the low-contrast detectability of a screen-film system and third generation computed radiography. Med. Phys. 21(5): 691-695, 1994.
 [22] Danciu, C., Proimos, B.S., Rosenwald, J.C. and Mijnheer, B.J. Variation of sensitometric curves

- Danciu, C., Proimos, B.S., Rosenwald, J.C. and Mijnheer, B.J. Variation of sensitometric curves of radiographic films in high energy photon beams. Med. Phys. 28: 966-974, 2001.
 Dempsey, J.F., Low, D.A., Kirov, A.S. and Williamson, J.F. Quantitative optical densitometry with scanning-laser film digitizers. Med. Phys. 26: 1721-1731, 1999.
 Dempsey, J.F., Low, D.A., Muite, S., et al. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Medical Physics 27: 2462-2475, 2000.
 Dixon, R.L. and Ekstrand, K. A film dosimetry system for use in computed tomography. Partitiones 127: 955-951 1978.

- Dixon, R.L. and Ekstrand, K. A film dostimetry system for use in compared tomography-Radiology 127: 255-258, 1978.
 Dobson, G.M.B., Griffith, I.O. and Harrison, D.N. Photographic Photometry. Oxford: The Clarendon Press; 1926.
 Doglam, D.M., Coffey, C.W., 2nd, Lobdell, J.L. and Schell, M.C. Radiochromic film dosimetry of a high dose rate beta source for intravascular brachytherapy. Med. Phys. 26: 2461-2464, 2000.
- Dutreix, J. and Dutreix, A. Film dosimetry of high-energy electrons. Ann. N Y Acad. Sci 161: 33-43, 1969.
 Ehrlich, M. Characteristic curves for X-ray exposures at various dose rates. J. Opt. Soc. Am.
- 46: 801-, 1956.[30] el-Khatib, E., Antolak, J. and Scrimger, J. Evaluation of film and thermolumir
- of high-energy electron beams in heterogeneous phantoms. Med. Phys. 19: 317-323, 1992.

-References

- [31] Evans, M.D. and Schreiner, L.J. A simple technique for film dosimetry. Radiother. Oncol. 23: 265-267, 1992.

- Evans, M.D. and Schreiner, I.J. A simple technique for film dosimetry. Radiother. Oncol. 23: 265-267, 1992.
 Foulkes, K., Ostwald, P. and Kron, T. A clinical comparison of different film systems for radiotherapy portal imaging. Med. Dosim. 26: 281-284, 2001.
 Francescon, P., Cora, S., Cavedon, C., et al. Use of a new type of radiochromic film, a new parallel-plate micro-chamber, MOSPETS, and TLC 800 microcubes in the dosimetry of small beams. Med. Phys. 25: 303-3511, 1998.
 Granke, R.C., Wright, K.A., Evans, W.W., Nelson, J.E. and Trump, J.G. The film method of tissue does studies. Am. J. Reentgenol. 72: 302-307, 1954.
 Gurney, R.W. and Mott, N.F. The theory of photolysis of silver bromide and the photographic latent image. Proc. Roy, Soc. A164: 151, 1938.
 Hale, J.L., Kert, A.T. and Shragge, P.C. Calibration of film for accurate megavoltage photon dosimetry. Med. Dosim. 19: 43-46, 1994.
 Haus, A.G. Advances in Film Processing Systems Technology and Quality Control in Medical Imaging. Madison, Wi: Medical Physics Publishing: 2001.
 Haus, A.G., Dickerson, R.E., Huff, K.E., et al. Evaluation of cassette-screen-film combination for radiation therapy portal localization imaging with improved contrast. Med. Phys. 24: 1605-8, 1997.
 Haus, A.G., Dickerson, R.E., Huff, K.E., et al. Evaluation of cassette-screen-film combination for radiation therapy portal localization imaging with improved contrast. Med. Phys. 24: 1605-1613, 1997.
 Herz, R.H. The Photographic Action of Ionizing Radiations. New York: Wiley-Interscience: 1969. Matchege Mathematica Science Scienc

-References

- III, S.G., Ahn, Y.C., Huh, S.J. and Yeo, I.J. Film dosimetry for Intensity modulated radiation therapy: dosimetric evaluation. Med. Phys. 29: 351-355, 2002.
 Kellermann, P.O., Ertl, A. and Gornik, E. A new method of readout in radiochromic film dosimetry. Phys. Med. Biol. 43: 2251-2263, 1998.
 Klein, E.E., Low, D.A., Meigooni, A.S. and Purdy, J.A. Dosimetry and clinical implementation of dynamic wedge. Int. J. Radiat. Oncol. Biol. Phys. 31: 583-92, 1995.
 Kandon, K.K. and Gors, V. Characterization of new portal film systems for radiotherapy verification. Br. J. Radiol. 72: 479-484, 1999.
 I. Z., Wen, D., Chen, D., et al. A study of dosimetric characteristics of GAF DM-1260 Radiochromic films. Radiat. Phys. Chem. 57: 103-113, 2000.
 Ma, L. Li, X.A. and Yu, C.X. An efficient method of measuring the 4 mm helmet output factor for the Gamma Knife. Phys. Med. Biol. 45: 709-733, 2000.
 Mayer, R., Williams, A., Frankel, T., et al. Two-dimensional film dosimetry application in heterogeneous materials exposed to megavoltage photon beams. Med. Phys. 24: 455-460, 1997.
- [48]
- 1997. McLaughlin, W.L., Soares, C.G., Sayeg, J.A., et al. The use of a radiochromic detector for the determination of stereotactic radiosurgery dose characteristics. Med. Phys. 21: 379-388, 1994. McLaughlin, W.L., Yun-Dong, C., Soares, C.G., et al. Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams. Nucl. Instr. Meth. Phys. Res. A302: 165-176, 1991. [49]
- Res, A302: 165-176, 1991. Meigooni, A.S., Sanders, M.F., Ibbott, G.S. and Szeglin, S.R. Dosimetric characteristics of an improved radiochromic film. Med. Phys. 23: 1883-1888, 1996.

- -References
 [51] Meigooni, A.S., Zhu, Y., Williamson, J.F., et al. Design and dosimetric characteristics of a high dose rate remotely afterloaded endocavitary applicator system. Int. J. Radiat. Oncol. Biol. Phys. lose rate remotely aft 34: 1153-1163, 1996.

- Menon, G. and Sloboda, R. Measurement of relative output for 90Sr ophthalmic applicators using radiochromic film. Med. Dosim. 25: 171-177. 2000.
 Muench, P.J., Meigooni, A.S., Nath, R. and McLaughlin, W.L. Photon energy dependence of the sensitivity of radiochromic film and comparison with silver halide and LiF TLDs used for brachytherapy dosimetry. Med. Phys. 18: 767-775. 1991.
 Mingnoi, T. and Ehlermann, D.A.E. Effects of temperature and humidity during irradiation on the response of radiochromic film dosimeters. Radiat. Phys. Chem. 43: 569-572, 1994.
 Niroomand-Rad, A. Comment on "Dosimetric characteristics of an improved radiochromic film response for two-dimensional dosimetry" [Med. Phys. 24: 2233 (1997)]. Med. Phys. 24: 1317, 1997.
 Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., et al. Radiographic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25: 2093-2115, 1998.

- Recommendations of AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25: 2093-2115, 1998.
 [57] Niroomand-Rad, A., Gillin, M.T., Kline, R.W. and Grimm, D.F. Film dosimetry of small electron beams for routine radiotherapy planning. Med. Phys. 13: 416-21, 1986.
 [58] Olch, A. Dosimetric performance of an enhanced dose range radiographic fFilm for intensity modulated radiation therapy quality assurance. Med. Phys. 29: (in press), 2002.
 [59] Pai, S., Reinstein, L.E., Gluckman, G., Xu, Z. and Weiss, T. The use of improved radiochromic film for in vivo quality assurance of high dose rate brachytherapy. Med. Phys. 25: 1217-21., 1998.
 [60] Ptermattei, A., Miceli, R., Azario, L., et al. Radiochromic film dosimetry of a low energy proton beam. Med. Phys. 27: 1655-1660, 2000.

-References

- [61] Ramani, R., Lightstone, A.W., Mason, D.L. and O'Brien, P.F. The use of radiochromic film in treatment verification of dynamic stereotactic radiosurgery. Med. Phys. 21: 389-392, 1994.
 [62] Ramani, R., Lightstone, A.W., Mason, D.L.D. and O'Brien, P.F. The use of radiochromic film in treatment verification of dynamic stereotactic radiosurgery. Med. Phys. 21: 389-392, 1994.
 [63] Reinstein, I.E. and Gluckman, G.R. Comparison of dose response of radiochromic film measure with He-Ne laser, broadband, and filtered light densitometers. Med. Phys. 24: 1331-1533, 1997.
 [64] Reinstein, L.E., Gluckman, G.R. and Monds, H.I. Predicting optical densitometer response as a function of light source characteristics for radiochromic film dosimetry. Med. Phys. 24: 1935-1942.
 - 1942, 1997
- [65] Reinstein, L.E., Gluckman, G.R. and Meek, A.G. A rapid colour stabilization (http://www.sci.uk/apatter.a

-References

- FACIENTERIEURCES
 [71] Stevens, M., Turner, J., Hugtenburg, R. and Butler, R. High-resolution dosimetry using radiochromic film and a document scanner. Phys. Med. Biol. 41: 2357-2365, 1996.
 [72] Suchowerska, N., Hoban, P., Butson, M., Davison, A. and Metcaffe, P. Directional dependence in film dosimetry: radiographic and radiochromic film. Phys. Med. Biol. 46: 1391-1397, 2001.
 [73] Suchowerska, N., Hoban, P., Davison, A. and Metcaffe, P. Perturbation of radiotherapy beams by radiographic film: measurements and Monte Carlo simulations. Phys. Med. Biol. 44: 1755-1765, 1999.
 [74] use Returne Leff. 1100.

- Yan Battum, LJ. and Heijmen, BJ. Film dosimetry in water in a 23 MV therapeutic photon beam. Radiother. Oncol. 34: 152-159, 1995.
 Yan Battum, LJ. and Huizenga, H. Film dosimetry of clinical electron beams. Int J Radiat Oncol Biol Phys 18: 69-76, 1990.
 Yan Bartum, LJ. and Huizenga, H. Film dosimetry of clinical electron beams. Int J Radiat Oncol Biol Phys 18: 69-76, 1990.
 Yan Bree, N.A., Idzes, M.H., Huizenga, H. and Mijnheer, B.J. Film dosimetry for radiotherapy treatment planning verification of a 6 MV tangential breast irradiation. Radiother. Oncol. 31: 251-255, 1994.
 Yatnitsky, S.M., Radiochromic film dosimetry for clinical proton beams. Appl Radiat Isot 48: 643-651, 1997.
 Yatnitsky, S.M., Radiochromic 44: 2789-2801, 1999.
 Yatnitsky, S.M., Schuller, R.W., Galindo, R., Meinass, H.J. and Miller, D.W. Radiochromic film dosimetry for verification of dose distributions delivered with proton-beam radiosurgery. Phys. Med. Biol. 42: 1897-1898, 1997.
 Williamson, J.F., Khan, F.M. and Sharma, S.C. Film dosimetry of megavoltage photon beams: a
- [80] Williamson, J.F., Khan, F.M. and Sharma, S.C. Film dosimetry of megavoltage photon beams: a practical method of isodensity-to-isodose curve conversion. Medical Physics 8: 94-98, 1981.

-References

- [82]
- [83]
- [84]
- [85]
- Wu, A. and Krasin, F. Film dosimetry analyses on the effect of gold shielding for iodine-125 eye plaque therapy for choroidal melanoma. Med. Phys. 17: 843-846, 1990. Yasuda, T., Beatty, J., Biggs, P.J. and Gall, K. Two-dimensional dose distribution of a miniature x-ray device for stereotactic radiosurgery. Med. Phys. 25: 1212-1216, 1998. Yeo, I.J., Wang, C.K. and Burch, S.E. A filtration method for improving film dosimetry in photon radiation therapy. Med. Phys. 24: 1943-1953, 1997. Yeo, J.J., Wang, C.K. and Burch, S.E. A similation, Phys. Med. Biol, 44: 3055-3069, 1999. Zhu, R., Jursinic, P., Grimm, D., et al. Evaluation of Kodak ED24: 3055-3069, 1999. Zhu, R., Jursinic, P., Grimm, D., et al. Evaluation of Kodak ED24 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator. Med. Phys. 29: (in press), 2002. Zhu, Y., Kirov, A.S., Mishar, V., Meigooni, A.S. and Williamson, J.F. Quantitative evaluation of radiochromic film response for two-dimensional dosimetry. Med. Phys. 24: 223-231, 1997