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Intensity modulated radiation therapy (IMRT) is being developed into an important modality in 
radiotherapy. Institutions worldwide are attempting or planning to integrate this new technology 
into their clinics. Before the IMRT implementation, it is desirable to understand the overall 
inverse planning process and how the general concept of inverse planning is implemented. This 
will help in making better decisions regarding which system is best suitable to your clinical 
environment and thus facilitate the implementation process. In general, there are three integral 
parts in IMRT: inverse planning [1, 2], dynamic delivery [3], and quality assurance [4-8]. The 
purpose of this talk is to present an overview of the state-of-the-art inverse planning algorithms 
as well as our perspectives on several practical issues relevant to the subject. In particular, we 
will identify the problems in currently available systems and described the techniques that have 
been or are being developed to overcome the problems.  
 
Radiation treatment planning requires the calculation of a set of parameters for the delivery of a 
certain radiation dose to the patient. Ideally, radiation dose distribution should be designed to 
conform perfectly to the entire tumor volume while completely avoiding surrounding normal 
tissues. Although achievement of this goal is practically impossible, a computer optimization can 
potentially simplify the tedious planning procedure and yield the best possible plans[1] [2]. 
Computer optimization becomes necessary for IMRT treatment planning because of the vast 
search space. The implementation of the general concept of inverse planning differs from system 
to system. The degree of optimality of the final solution is generally determined by  the form of 
objective function and the methods to search for the minimum (or maximum) of the defined 
objective functions. 
 
The role of objective function is to establish a link between the output dose distribution and the 
input beam parameters (beamlet weights or beam profiels). The objective function measures the 
goodness of a selected plan and its choice is crucial for therapeutic plan optimization. The 
objective function can be based solely on dose or it can use a radiobiological model. The former 
is concerned with the interaction between radiation and matter and calls for accurate dose 
distributions, with the biological aspect being implicitly given in the physician's prescription.  
The biological model argues that optimization should be based on the biological effects produced 
by the underlying dose distributions. The treatment objective is usually stated as the 
maximization of the tumor control probability (TCP) while maintaining the normal tissue 
complications probability (NTCP) to within acceptable levels. A TCP is related to a dose 
distribution by the dose response function, which is not sufficiently understood. At this point, the 
dose-based approach is still widely used in practical optimization whereas biological models  are 
often used conceptually. This is evidenced by the fact that all commercial inverse planning 
systems use dose-based (with or without dose-volume constraints) objective function. 
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Figure 1    A schematic drawing of currently available inverse planning 
process. The inverse planning objective function of the  system depends on 
the prescribed target dose and sensitive structure tolerances, beam parameters 
(beam directions,  collimator angles, beam energies), and the structure specific 
importance factors.
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In IMRT, the objective function is a function of the beamlet weights. The number of beamlet for 
a given case varies from a few hundreds to several thousands, depending on the tumor size and 
beamlet size. A given objective function can be optimized using many different optimization 
algorithms, such as iterative methods [9-11], simulated annealing [12-15], filtered backprojection 
[15], genetic algorithm [16], maximum likelihood approach[1, 17], linear programming [18], etc. 
For all their complexity, the algorithms to optimize a multidimensional function are routine 
mathematical procedures. In general, simulated annealing and genetic algorithms are powerful 
approaches, but excessive computation time is a drawback to their clinical application.  
Treatment planning based on  filtered backprojection  and direct Fourier transformation have 
difficulty  handling the negative fluence problem and are not generally applicable for an arbitrary 
dose prescription and kernel.  An iterative method is a widely used technique to optimize a 
multidimensional objective function by starting with an initial approximate solution and 
generating a sequence of solutions that converge to the optimal solution of the system. 
 
Inverse planning is at the foundation of IMRT and its performance critically determines the 
success of an IMRT treatment. Unfortunately, the currently available inverse planning formalism 
is deficient and the solutions out of so-called “optimization” systems are often sub-optimal or 
even not optimal at all from clinical point of view.  Considerable effort may be required to 
compute a clinically acceptable plan and the final results may strongly depend on the planner’s 
experience and understanding of the planning system. These shortcomings of the existing 
available systems are familiar to anyone engaged in clinical IMRT treatment planning.  A typical 
inverse planning system is shown in Fig. 1. In addition to the prescription doses, the current 
planning system requires the user to pre-select the angular variables (gantry, couch, and 
collimator angles) and the relative importance factors of the involved structures. These variables 
and parameters constitute an additional multi-dimensional space, which is coupled to the beam 
profiles in complicated fashion. A survey carried out by us indicates that there are four major 
problems in current inverse planning systems: (1) No effective mechanism for incorporating 
prior experience into dose optimization; (2) Lack of direct control over regional dose; (3) No 
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effective tools for aiding beam placement in IMRT planning; and (4) Inefficient interface 
between planning and delivery systems.  
 
Toward establishment of a clinically efficient and robust inverse planning system, we have 
attacked the problems mentioned above and developed a series of computational tools, which 
will be discussed in the presentation. Briefly, we have developed a statistical analysis based 
inverse planning formalism for incorporating prior knowledge. The approach is based on the 
concept of preference function [1, 2]. Instead of using rigid dose prescription (with or without 
DVH constraints), we are able to optimize a system with a range of prescription doses. In 
addition to make the system less ill-defined, this new scheme allows us to formalize our clinical 
knowledge (such outcome data and dose-volume-complication [19-21]) and incorporate them 
into dose optimization.  
 

A voxel-dependent penalty scheme into inverse planning has been introduced to enhance our 
control over the regional dose. We pointed out that the local dosimetric behavior can be more 
effectively controlled by this scheme and demonstrated the utility of the approach using a model 
systemas well as clinical examples. In figure 2 we show an example of 6-field IMRT prostate 
treatment. To reduce the doses to the two hot spots seen in the conventional plan (left), 
particularly to the one near the center of the prostate, we graphically identified the hot regions 
and then assigned a higher importance to the corresponding voxels. The middle panel of Fig. 2 
shows the isodose distribution after adjustment. The hot spot near the urethra disappeared and 
the size of the other hot spot was reduced significantly. This improvement is more evident in the 
DVH. 
 

  

 Fig. 2  A conventional IMRT prostate plan (left). Two 106% hot spots are present in the prostate (85% is prescription isodose 
line). The dose distribution after increasing the local importance factors is shown in the right. The hot spot near the center of 
the prostate disappeared while the size of the second hot spot is reduced. 

 
 Beam configuration may have significant influence on the quality of an IMRT treatment 

even when a large number of incident beams (e.g., nine beams) is used [14, 22-25]. Clinically, 
however, beam orientations are still selected based on trial-and-error. To obtain an optimal beam 
configuration, in principle, one can simply add the degree of freedom of beam angles into the 
objective function and optimize them together with the beamlet weights. While this does not pose 
any conceptual challenge, the computational time becomes excessive because of the greatly 
enlarged search space and the coupling between the beam profiles and the beam configurations. The 
beam intensity profiles have to be optimized for every trial beam configuration as the influence of a 
set of gantry angles on the dose distribution is not known until the beam intensity profile 
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Fig. 3  Isodose distribution of an IMRT treatment 
with 5 equiangular beams (40o,  110o, 180o, 255o, 
325o). The middle and bottom plots show the 
BEVD score for the patient for coplanar and non-
coplanar beam configurations, respectively. 

Fig. 4 Comparison of the DVHs of the GTV, cord, kidney, and liver for
the treatment plans of paraspinal tumor. DVHs are shown for the plans
with following beam configurations: five coplanar equiangular spaced
beams (dash-dotted line), five coplanar beams with BEVD-selected
orientations (dashed line), and five non-coplanar beams with BEVD-
selected orientations (solid line). 
.

optimization is performed. Furthermore, a stochastic optimization algorithm is needed to optimize 
the gantry and couch angles due to the  non-convex structure of the objective function with respect 
to these variables. A computationally efficient optimization algorithm is necessary to have a 
clinically practical beam orientation optimization tool. We have developed a beam eye's-view 
dosemetrics (BEVD) for assisting IMRT beam orientation selection [26, 27]. The basic assumption 
here is that the merit of a beam direction should be measured by what that beam could achieve 
dosimetrically without exceeding the dosimetric or dose-volume constraint of the system. The best 
achievable scenario of a given beam can be determined based on a priori dosimetric and geometric 
information of the given patient. In Fig. 3 we show the BEVD score functions for an IMRT 
treatment of a para-spinal tumor.  Figure 4 shows the DVHs of various structures for plans obtained 
with and without the BEVD guiding tool. The whole calculation of the BEVD score was less than 3 
minutes even for the non-coplanar beam configuration on a SGI O2 R5000 workstation. The BEVD 
information can also be integrated into beam orientation optimization program to greatly improve 
the convergence behavior and computing speed of beam orientation optimization calculation. This 
will be discussed in the presentation. 
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Finally, we mention that it is clinically useful to improve the efficiency of the interface between 
the inverse planning system and the dynamic MLC delivery system.  There are many research 
activities in this direction, which includes, but not limited to, incorporating machine constraints 
into dose optimization, aperture-based optimization. 
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