44th Annual Meeting of the AAPM, July 15th, 2002 CE-IMRT 1: Quality Assurance of IMRT Delivery Systems - Elekta

M.B. Sharpe, Ph.D. Department of Radiation Oncology William Beaumont Hospital

Royal Oak, MI, 48073-6769

msharpe@beaumont.edu

William Beaumont Hospital is customer and collaborator of ADAC Laboratories and Elekta Oncology Systems

Acknowledgements

- Kevin Brown Elekta Oncology Systems
- Geoff Budgell Christie Hospital
- Ted Thorson Elekta Oncology Systems
- Peter Williams Christie Hospital
- John Wong William Beaumont Hosptial

MBS June 4th, 2002

Outline

- Introduction
- Anatomy of an Elekta Accelerator and MLC
- MLC Calibration
- Beam Stability
- Dosimetry of Small Fields
- Summary

Introduction

- Step-and-shoot approach with MLC.
- Non-uniform intensity profiles generated with a series of discrete, uniform beam segments.
- MLC leaves are stationary when beam is on.
- Beam is off when leaves are moving.

MBS June 4th, 2002

Introduction

Considerations:

- Geometric calibration and constraints of MLC.
- Beam stability for short irradiation times (few MUs).
- Dosimetry of small fields (i.e., as small as 1x1 cm²).
- Small fields offset from central axis.
- Fewer segments and MLC backup jaws allow less concern for inter-leaf leakage, tongue & groove effects, and curved leaf face.

Elekta Linear Accelerators

- Traveling wave accelerator
- Mounted on drum structure.
- Magnetron RF supply.
- Diode electron gun: no grid.
- Integrated MLC

MBS June 4th, 2002

IBS June 4th, 200

Fast Tuning Magnetron (FasTraq)

- New magnetron with instantaneous frequency capture
- Reduces initial start up and inter segment times
- Standard on new machines
- Available as upgrade

Elekta MLC

- 40 leaf pairs (10mm pitch)
 Replaces upper jaws
- Replaces upper jaws
 Backup jaws (30mm W)
- 40 x 40 cm² field size
- Total of 32.5 cm leaf travel
- 12.5 cm travel over central axis
- Opposing leaf-pairs do not touch
- Optical tracking (real time).
- Integral auto-wedge

MBS June 4th, 2002

Optical Leaf Tracking System ILLUMINATION SYSTEM Incident Light ILLUMINATION SYSTEM Reflected Light Camera 7525Baam Splitter Wedge Minor Camera Vedge Minor Vedge Winor

IMRT QA and Commissioning

- Considerations:
 - MLC calibration
 - MLC reproducibility
 - Beam stability for short irradiation times (few MUs).
 - Small fields (i.e., as small as 1x1 cm²).
 - Fields offset from central axis.

Beam Stability: Dose Rate

- With step-and-shoot delivery, there is the potential for short irradiation times (MUs).
- Dose rate stability influences the treatment precision.
- Measure dose per MU versus total MU.
- Check short, and long term stability.
- For > 2MU, dose rate is within $\pm/-2\%$ (2 σ).

MBS June 4th, 2002

Beam Symmetry and Flatness

Beam Stability: Flatness, Symmetry

- Stability of flatness and symmetry affects dose rate for small fields directed off the central axis.
- For an open 20x20cm² field, measure profiles for irradiations ranging from 1 to 100 MU.
 Sun Nuclear Profiler (46 diodes, 10 profiles/sec).
- Flatness is +/-3% if more than 5MU delivered.
- Symmetry +/-3% if more than 4MU delivered.

MBS June 4th, 200

Relative Dose Rate vs Field Size

- Collimation of head scatter affects dose rate "in-air".
- Dose rate in vivo is further affected by photon scatter and e⁻ transport.
- Beam weights calculated by inverse planning must be adjusted to account for head scatter.

	1.1	F						
Relative Output Factor	1.0	and a second	ľ	head	scati	ler		•••
	0.9		4	nhant	om 6/	ottor & o	Iransnor	. 1
	0.8	and the	ĺ	pnan	5 5.		uunspor	
	0.7	a da				→ "In	-Air"	
	0.6					In-I	Phantor	n -
	0.5	٤ <u>۲</u>			 			 10
		٠ ٤	2 Side I	Leng	+ jth o	of Squa	are [cn	n]

Relative Output in Water (6MV)

Output Factors for Small Fields

- Profiles measured in water (10cm depth) using a pinpoint ion chamber (0.015cm³).
- Calculated with pencil-beam convolution and extrafocal source model.
- Verified radiation field size and offsets.
- Calculations & measurement agree to within 1% on average, 2.5% max.

Output Factors for Small Fields

MBS June 4th, 2002

Output Factors for Small Fields

- Typically measure in water (10cm depth) using a pinpoint ion chamber (0.015cm³) and beam scanning system
- Scan profiles to verify leaf positioning radiation field size and offsets

MBS June 4th, 2002

IMRT QA with EPID (iViewGT)

- - Flat-panel imager
 41cm² a-Si panel
 - 41cm- a-Si panei
 - 26cm² field at isocentre
 - 15cm offset in all quadrants
 - 16 bit gray scale resolution
 - 3 frames per sec readout
 - Primary function is to ve patient position

MBS June 4th, 2002

iViewGT: IMRT QA Possibilities

- Dosimetry QA
- QA beam flatness and symmetry
- MLC calibrationQA leaf position
 - 1

MBS June 4th, 2002

MLC Calibration

- Extremely time-consuming using film, especially if adjusting gain & offset.
- Possibly requires tighter tolerances / more frequent checking for IMRT
- iViewGT has 0.25 mm resolution at isocentre – ought to be sufficient for MLC calibration

Matched step & shoot fields

Spot the errors

Conclusions

- Low MU images and template matching enable easy patient position verification
- Require access to raw images for dosimetry applications
- Looks promising for QC applications and MLC calibration

Summary

- Commissioning:
 - Range of clinical operation to 1x1 cm² fields, and 1-2 MU irradiations
 - Verify beam stability for short exposures
- Quality Assurance:
 - Enhance monthly QA to test MLC operation, accuracy and precision.
- A-Si EPID: Intergated QA device.

MBS June 4th, 2002