
ROC analysis in patient specific quality assurance1

Marco Carlonea)
2

Department of Medical Physics, Trillium Health Partners, Mississauga, Ontario L5M 2N1, Canada; Radiation
Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada; and Department
of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3S2, Canada

3

4

5

Charmainne Cruje, Alejandra Rangel, Ryan McCabe, and Michelle Nielsen6

Department of Medical Physics, Trillium Health Partners, Mississauga, Ontario L5M 2N1, Canada7

Miller MacPherson8

Department of Medical Physics, Trillium Health Partners, Mississauga, Ontario L5M 2N1, Canada; Radiation
Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada; and Department
of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3S2, Canada

9

10

11

(Received 26 September 2012; revised 1 March 2013; accepted for publication 1 March 2013;
published XX XX XXXX)

12

13

Purpose: This work investigates the use of receiver operating characteristic (ROC) methods in patient
specific IMRT quality assurance (QA) in order to determine unbiased methods to set threshold criteria
for γ -distance to agreement measurements.
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Methods: A group of 17 prostate plans was delivered as planned while a second group of 17 prostate
plans was modified with the introduction of random multileaf collimator (MLC) position errors that
are normally distributed with σ∼±0.5, ±1.0, ±2.0, and ±3.0 mm (a total of 68 modified plans were
created). All plans were evaluated using five different γ -criteria. ROC methodology was applied by
quantifying the fraction of modified plans reported as “fail” and unmodified plans reported as “pass.”
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Results: γ -based criteria were able to attain nearly 100% sensitivity/specificity in the detection of
large random errors (σ > 3 mm). Sensitivity and specificity decrease rapidly for all γ -criteria as the
size of error to be detected decreases below 2 mm. Predictive power is null with all criteria used
in the detection of small MLC errors (σ < 0.5 mm). Optimal threshold values were established by
determining which criteria maximized sensitivity and specificity. For 3%/3 mm γ -criteria, optimal
threshold values range from 92% to 99%, whereas for 2%/2 mm, the range was from 77% to 94%.
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Conclusions: The optimal threshold values that were determined represent a maximized test sensitiv-
ity and specificity and are not subject to any user bias. When applied to the datasets that we studied,
our results suggest the use of patient specific QA as a safety tool that can effectively prevent large er-
rors (e.g., σ > 3 mm) as opposed to a tool to improve the quality of IMRT delivery. © 2013 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4795757]
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I. INTRODUCTION34

With widespread use of IMRT and VMAT in radiotherapy,35

patient specific quality assurance (QA) is now a staple of36

many medical physics departments. Given the complex na-37

ture of IMRT/VMAT beam delivery, many institutions rely38

on a patient specific measurement to assure that the beam39

fluence delivered by the linear accelerator conforms to the40

planned beam fluence. Most accepted methods to quantify the41

patient specific measurement1, 2 are based on comparisons of42

absolute dose (AD) and distance to agreement (DTA). The43

method of Low et al.3 is used often, and this technique is44

typically referred to as the gamma (γ ) analysis. For simple,45

one-dimensional distributions, it is relatively straightforward46

to compute the probability of two distributions being dif-47

ferent using standard statistical methodology.4 For complex48

two-dimensional (2D) distributions such as those measured49

in typical IMRT/VMAT deliveries, obtaining a measure of50

the difference between the two distributions in a statistically51

meaningful way is more complicated. The method of Low3
52

computes the dose difference at a point and the distance to 53

the nearest point with equivalent dose for all points in a 2D or 54

higher distribution (between measured and calculated distri- 55

butions). The scaled dose differences and distances to agree- 56

ment are added in quadrature; the γ -statistic is then created by 57

measuring the percentage of points with a gamma index less 58

than or equal to a threshold value of 1. A decision threshold 59

value of the percentage of points passing the criteria separates 60

accepted from unaccepted plans. 61

The practice of IMRT QA analysis is thus influenced by the 62

criteria used as well as the decision threshold value. Extensive 63

work has been conducted to frame the limitations and extent 64

of the contribution of patient specific planar measurements 65

to both the quality and the safety of radiation therapy treat- 66

ments. For example, studies have attempted to evaluate the ef- 67

fectiveness of γ -based tests in detecting a variety of errors in 68

the delivery of IMRT techniques, from detecting large errors 69

such as missing fields5 to subtle, but important, errors such as 70

the positioning of the multileaf collimator (MLC) leaves.6–10
71

For each of these studies, a small combination of gamma 72
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criteria (e.g., usually 2%/2 mm DTA and or 3%/3 mm DTA)73

has been used with the purpose of (1) reporting the perfor-74

mance of the test in terms of points passing the criteria11
75

and/or (2) selecting an achievable tolerance criteria that could76

separate acceptable plans from unacceptable ones.12 Toler-77

ance criteria were historically selected based on experience78

of achievable passing rates13 and most recently have been re-79

lated to desirable clinical or biological endpoints.9, 14–16 Other80

studies have used statistical methods to evaluate the underly-81

ing distribution of expected outcomes based on past experi-82

ence with the purpose of alleviating the lack of reference or83

baseline to assess the resultant passing rate.17–19
84

Ultimately, clinical physicists are expected to make ac-85

cept/reject decisions based on the results of planar dose com-86

parisons. An IMRT fluence pattern that is indistinguishable87

from the planned fluence pattern should be identified as a pos-88

itive test result while fluence patterns that are significantly dif-89

ferent should be classified as a negative test result. The ability90

of the test to detect “abnormal” fluence distributions can be91

evaluated in terms of the test’s sensitivity and specificity. It92

is, however, difficult to quantify sensitivity and specificity of93

a test using the γ -statistics alone since previous studies have94

focused on the physical requirements of the fluence measure-95

ment device (dose response, detector spacing, etc.). Further,96

test results are bounded to a specific threshold value (percent-97

age of points passing), which is subject to user bias. The test98

accuracy is thus an ineffective means of evaluating its perfor-99

mance since it relies on an arbitrary decision threshold.100

Signal detection theory offers statistical tools to help quan-101

tify test results where a binary outcome is generated.20 In di-102

agnostic imaging, there is now extensive literature describ-103

ing the use of the receiver operating characteristic analysis to104

quantify the value of a diagnostic imaging test. This method105

has also been used in other areas of medical testing with bi-106

nary outcomes.21–24 Measurements of true positive results and107

false negative results, plotted in the form of a ROC curve, al-108

low the sensitivity and specificity of a test to be quantified in a109

manner that is independent of threshold bias. The purpose of110

this work is to investigate the value of ROC methodology as it 111

is applied to patient specific IMRT quality assurance with the 112

objective of removing user bias in determining the technique’s 113

fundamental detectability. 114

II. METHODS AND MATERIALS 115

II.A. ROC methodology 116

In medical imaging, ROC analysis has been used to define 117

the ability of diagnostic tests to discriminate between normal 118

and abnormal images. An important feature is that it evaluates 119

diagnostic performance without being affected by varying de- 120

cision threshold values.20 Due to the existence of varying case 121

severities, overlaps between normal and abnormal cases oc- 122

cur. Diagnostic tests that perform well display minimum over- 123

lap (Fig. 1, center image) while poor performance tests dis- 124

play significant overlap (Fig. 1, left image). For a good per- 125

formance test, the most optimal threshold can easily be iden- 126

tified as the value that will optimize the true positive fraction 127

(TPF) and the true negative fraction (TNF). For the rest of the 128

tests, a change in the value of the threshold represents a trade- 129

off between the test sensitivity and specificity. Viewed within 130

the context of ROC analysis, planar dose comparisons using 131

gamma based tests exhibit overlapping distributions of plans, 132

some of them fall within the desired standard of quality while 133

others fall outside of it. 134

To perform ROC analysis, populations of known normal 135

and abnormal cases are placed through the diagnostic test of 136

interest. The fractions of abnormal cases diagnosed to be ab- 137

normal (TPF) and normal cases diagnosed to be abnormal 138

(1 − TNF, or false positive fraction, FPF) are calculated for 139

varying thresholds. TPFs are plotted against corresponding 140

FPFs to produce the ROC curve in the ROC space, which con- 141

sists of values from 0 to 1 in both axes (Fig. 1, right image). 142

To evaluate diagnostic performance, the area under the ROC 143

curve (AUC) is calculated. The closer the AUC is to 1.00, the 144

better its performance. On the contrary, the closer the AUC is 145

FIG. 1. Illustration of tests whose binary outcome lead to good or poor detectability. Tests where a normal result and an abnormal result share a very similar dis-
tribution (left panel) are difficult to discriminate on the basis of measurements below or above a threshold value. Tests whose normal and abnormal distributions
have dissimilar distributions, such as in the middle panel, are easier to differentiate using a threshold value. Tests that are more ideal lead to better detectability,
where the false positive fraction approaches 0, and the true positive fraction approaches 1 (right panel).
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to 0.50, less useful the diagnostic test is. Optimal decision146

criteria or thresholds may also be determined. The impor-147

tance of determining optimal criteria or thresholds lies in the148

tradeoff between test sensitivity and specificity (TNF). Sen-149

sitivity and specificity reach a maximum when the selected150

threshold corresponds to the point on the ROC curve closest151

to (0, 1).152

II.B. Creation of a beam dataset with known153

fluence errors154

Delivery errors in IMRT can occur due to poor MLC155

performance,25 beam and MLC modeling errors,26–28 algo-156

rithm limitations in the treatment planning system,29 the lin-157

ear accelerators basic ability to match a rapidly varying spa-158

tial fluence pattern, or even data transfer errors.30 In order to159

determine the sensitivity and specificity of MLC fluence er-160

rors in our IMRT patient specific QA, a set of prostate plans,161

each with a seven field dynamic (sliding window delivery)162

treatment, were divided into two groups, one for control and163

the other for test. The unmodified group (UG) served as the164

control, without any changes to the MLC plan; the modi-165

fied group (MG) provided the test case, with predetermined166

MLC errors to simulate a delivery error. We assumed that our167

linear accelerator was able to deliver the MLC plan, modi-168

fied or unmodified, with equal bias between groups, i.e., a169

MLC delivery error was consistent across the groups, regard-170

less of the introduction of the test errors. This was assured171

by considering compliance to MLC carriage and leaf gap172

pair constraints. We only simulated MLC delivery error since173

this was relatively simple to produce on our linear accelera-174

tors. Other types of delivery errors were not simulated in this175

study.176

II.C. MLC perturbation to simulate poor delivery177

of dynamic IMRT beam fluence178

Beam fluences for 34 prostate IMRT plans (Varian Eclipse,179

version 8.5) were divided into two groups, UG and MG. The180

17 plans in UG were delivered as planned; the 17 plans in181

MG were manipulated using a MATLAB program to introduce182

random leaf errors that are normally distributed with standard183

deviation (σ ) approximately equal to ±0.5, ±1.0, ±2.0, and184

±3.0 mm. The positions of all closed leaves were not altered.185

In each plan, each field was perturbed independently by a186

given magnitude of error (e.g., σ = ±0.5 introduced indepen-187

dently to each of the 7 fields in plan X). Finally, 68 modified188

plans resulted from four unique modifications to each of 17189

plans were created.190

The new MLC positions were verified in order to comply191

with mechanical limitations of the Millenium MLC in the Var-192

ian iX linear accelerator. The position of a MLC leaf is limited193

by its opposite’s pair position and carriage position; a mini-194

mum gap of 0.5 mm is required by a moving leaf pair, while195

a maximum travel distance of 150 mm from plan-defined196

carriage position is permitted. Since carriage position limits197

maximum and minimum leaf positions, the revision of rule198

compliance was prioritized. First, leaf positions that violated199

maximum or minimum positions were replaced by closest 200

limits. All leaf pairs were then checked for a 0.5 mm mini- 201

mum gap. For leaf pairs that did not satisfy the minimum gap 202

requirement after verification of carriage limit issues, the po- 203

sition of a randomly chosen leaf was placed 0.5 mm away. 204

For leaf pairs that did not violate any limits, no adjustment 205

was done. Through these steps, the deliverability of modified 206

leaf positions was ensured. 207

II.D. Beam fluence measurement 208

The MapCHECK2 detector array (Sun Nuclear Corpora- 209

tion, Melbourne, FL) was placed on an isocentric mounting 210

fixture (IMF); planar dose measurements were collected us- 211

ing MapCHECK Software Version 3.5. Five different criteria 212

were used, this included γ analysis (absolute mode, VanDyk 213

and ROI criteria enabled) for 1%/1 mm, 2%/2 mm, 3%/3 mm, 214

4%/4 mm, and 5%/5 mm. 215

III. RESULTS 216

III.A. Resultant MLC position errors 217

Because of the mechanical restrictions of the Varian MLC, 218

the induction of leaf position errors using σ = ±0.50, ±1.00, 219

±2.00, and ±3.00 mm did not result in exactly these stan- 220

dard deviations, instead we obtained |σ | = 0.41 ± 0.16, 1.28 221

± 0.18, 2.12 ± 0.12, and 3.13 ± 0.15 mm. 222

III.B. ROC analysis 223

Patient specific measurements and comparisons were car- 224

ried through for each of the 68 modified plans and 17 unmod- 225

ified plans using each of the five criteria mentioned above. 226

Plots of the fraction of fields with a passing rate greater 227

than a user defined threshold (between 0% and 100%) were 228

binned and plotted against pass rate percentage. Figure 2 229

shows 4 of the 20 plots generated for each combination of 230

five criteria and four |σ |. From here, we generated a ROC 231

curve by varying the pass rate threshold and for each point 232

calculating: 233

1. The fraction of failed modified plans, which we desig- 234

nate TPF, and 235

2. The fraction of passed unmodified plans, which we 236

designate 1-FPF. 237

A total of 20 standard ROC curves (sensitivity or TPF vs 1- 238

specificity or FPF) were then generated; four of these are plot- 239

ted in Fig. 3. Those gamma criteria that produced curves with 240

AUC closest to 1 were selected and the corresponding cal- 241

culated AUC values were plotted against |σ | (Fig. 4). Uncer- 242

tainties in AUC were determined by the method described in 243

Lasko31 and Hanley.32 Ideal thresholds were determined by 244

finding which threshold corresponded to the point closest to 245

(0.00, 1.00) in the ROC space where sensitivity and speci- 246

ficity are both 100%. These were determined for each of the 247

sizes of error introduced in the modified plans, and plotted in 248

Fig. 5. 249
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FIG. 2. (a)–(d) Plots of the fraction of fields with a passing rate greater than a user defined threshold (between 0% and 100%). The unmodified MLC group
is shown in dashed lines, the group with MLC errors are shown with the solid lines. Separation between the pass rate distribution for the unmodified vs the
modified group increases as the size of MLC errors increases and as the γ -AD criterion is decreased.

III.C. Application to independent sets250

of prostate plans251

We applied the results in Fig. 5 to independent data to ver-252

ify that the suggested threshold values will effectively detect253

FIG. 3. ROC plots of sensitivity (TPF) vs 1-specificity (FPF) for 4 of 20
curves generated. Curves with highest area have the optimal sensitivity and
specificity. Curves along the diagonal, with AUC of 0.5 represent test whose
outcome is not significantly different than a random guess.

abnormal MLC delivery. The points of Fig. 5 that correspond 254

to the ideal threshold values to detect 1, 2, and 3 mm ran- 255

dom MLC errors were tabulated in Table I. We chose the 256

AP field from a 7 field prostate plan for 20 randomly chosen 257

FIG. 4. Measurement of AUC as a function of γ -criterion and size of MLC
error. For MLC errors greater than about 2 mm, the detector employed ex-
hibits very good sensitivity and specificity, and hence very good detectability.
For smaller MLC errors, sensitivity and specificity decrease to near random
results at very small MLC errors (0.5 mm).

Medical Physics, Vol. 40, No. 5, May 2013
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FIG. 5. The ideal threshold value as measured by the point on the AUC curve
closest to the point where sensitivity and specificity equal 1.

patients and introduced random errors of 0, 1, 2, 3, 4, and258

5 mm for each field. We then measured the beam fluence us-259

ing the MapCheck2 and applied γ -AD of 2%/2 mm and 3%/3260

mm using the threshold points in Table I to detect 3 mm leaf261

errors. The results are shown in Table II. As expected, our sys-262

tem was able to detect larger errors (4 mm and higher) with263

100% accuracy. This accuracy decreased for smaller errors in264

a manner similar to the trend exhibited by Fig. 4.265

IV. DISCUSSION266

Previous work in this area focused on two principle areas.267

Initial work examined the impact of machine delivery errors,268

or known errors in the planning system on the measured flu-269

ence map. For instance, Tatsumi and colleagues6 determined270

leaf position tolerances for VMAT by calculating the effect of271

leaf errors using different treatment planning systems. Wije-272

sooriya and colleagues7 examined the effect machine perfor-273

mance (gantry speed, leaf speed, etc.) on the accuracy of Rap-274

idArc delivery by recomputing a 3D dose distribution of plans275

delivered with known errors and comparing to the original276

3D plan. Rangel and colleagues8 examined the effect of sys-277

tematic MLC errors on patient specific QA and found that it278

was not effective at detecting these types of systematic errors.279

Basran12 examined the decision tree in IMRT QA, including280

results of monitor unit second check calculations and differ-281

ent fluence map detectors. These authors suggest threshold282

values for head and neck and nonhead and neck plans based283

on the 95% confidence intervals of observed gamma values.284

Finally, Palta and colleagues13 reviewed the precision require-285

ments for IMRT delivery at the subsystem level and stressed286

TABLE I. Ideal threshold parameters as determined from Fig. 5.

Criteria

〈σ̄ 〉 (mm) 2%/2 mm (%) 3%/3 mm (%)

1 89.2 98.2
2 84.6 96.5
3 78.9 92.9

that each subcomponent of IMRT delivery must be as precise 287

as possible, and more precise, in general, than for non-IMRT 288

deliveries. 289

A more recent and different approach is to examine the im- 290

pact on IMRT delivery on clinically relevant parameters such 291

as a DVH or a radiobiological metric, such as the general- 292

ized equivalent uniform dose (gEUD). Zhen and colleagues14
293

introduced four different types of IMRT errors and exam- 294

ine the impact on DVH. They reported weak correlation be- 295

tween gamma passing rate and critical patient DVH errors. 296

Rangel et al.15 generated random and systematic leaf errors 297

and examined the impact on EUD, and found a small impact. 298

Finally, Moiseenko et al.16 reported that planar fluence mea- 299

surements were more sensitive to detect changes in gEUD to 300

organ at risk than ion chamber measurements for plans with 301

small amounts of beam modulation, such as for non-head and 302

neck IMRT. 303

The current study aims to describe a more fundamental 304

method of identifying nonconformal beam fluences by pro- 305

viding a general method to assess the inherent “detectability” 306

of a detector. In medical imaging, an imager must identify 307

images that are abnormal; similarly, in IMRT QA, the pro- 308

cess should be optimized to identify plans where the deliv- 309

ered fluence is identifiably different than the planned fluence. 310

Our study is intended to provide a framework for the user of a 311

detector to determine unbiased γ -DTA thresholds for that de- 312

tector in a specific application. These threshold values max- 313

imize the ability (sensitivity and specificity) of the detector 314

to discriminate between fluence patterns that are known to be 315

correct and known to be incorrect, and thus provide a method 316

to determine baseline parameters for clinical use. 317

To achieve this, we applied ROC methodology. These 318

methods are designed to maximize the outcome of a binary 319

decision by choosing a decision threshold based on measured 320

and optimized detectability. As in medical imaging, the con- 321

text of use is important in identifying the decision threshold 322

value. For instance, the system requirements to optimize an 323

imaging system to detect abnormal chest x-ray images are dif- 324

ferent from that used to detect bone fractures. Similarly, we 325

expect that the operating parameters would be different for an 326

IMRT detector based on the type of IMRT delivery (VMAT vs 327

planar) and the treatment site. In this work, we studied beam 328

fluences for prostate IMRT, however, it is likely that differ- 329

ent results would be obtained for other sites such as lung or 330

head and neck. In head and neck IMRT in particular, where 331

beam modulation is high, we would expect different results 332

than those we found here for prostate cancer IMRT. Specifi- 333

cally, the ideal threshold percentages for head and neck cancer 334

IMRT may be lower than those for prostate cancer. The pur- 335

pose of this investigation was to define a method to determine 336

unbiased γ -DTA threshold criteria for any disease site, and 337

thus has value as a commissioning tool. We intend on report- 338

ing on our experience with this method as a tool to commis- 339

sion an IMRT program for different disease sites (prostate, 340

lung, head and neck, upper GI) in a future publication. The 341

following observations illustrate the features of a ROC analy- 342

sis that we believe are important to understand if this method 343

is to be used in the commissioning of an IMRT detector. 344
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TABLE II. Effect of applying the ideal threshold pass rates to an independent set of measurements. Using the AP field from a 7 field prostate plan for 20
randomly chosen patients, we introduced random errors of 1, 2, 3, 4, and 5 mm for each field. The number of field that would be rejected based on the ideal
threshold points from Table I were then determined.

MapCHECK criteria
2%/2 mm 3%/3 mm

MLC average leaf error 0 mm 1 mm 2 mm 3 mm 4 mm 5 mm 0 mm 1 mm 2 mm 3 mm 4 mm 5 mm

Ideal threshold point for 3 mm error detection 78.90% 92.90%
Average pass rate 87.4 81.8 70.4 56.4 50.2 45.1 98.6 95.9 87.1 72.5 68.4 62.0
Standard deviation 5.6 8.6 9.4 8.8 9.4 10.0 2.1 3.9 7.5 7.8 9.4 11.2
Number of points above threshold point 17 14 2 1 0 0 20 18 4 0 0 0
Number of points below threshold point 3 6 18 19 20 20 0 2 16 20 20 20
Rejection percentage 15 30 90 95 100 100 0 10 80 100 100 100

Highest sensitivity and specificity for a test is demon-345

strated by the largest areas under the ROC curve, Fig. 4 shows346

the impact on test sensitivity and specificity (in terms of the347

AUC) as the magnitude of leaf error is varied using two γ -348

based criteria (lines in Fig. 4 have been drawn for guidance349

only). These results indicate that for beam delivery systems350

where MLC errors |σ | are greater than about 2 mm, the choice351

of γ criterion (e.g., 2%/2 mm vs 3%/3 mm) has little effect352

on test performance, while for |σ | below 2 mm, the maxi-353

mal AUC increase is approximately 10%, which indicates the354

magnitude of test performance improvement one can expect355

as the gamma criterion is varied from 3%/3 mm to 2%/2 mm.356

However, using the method of Hanley33 to calculate the dif-357

ference in AUCs between 2%/2 mm and 3%/3 mm criterion,358

we found this difference not to be significant (p > 0.7).359

An important interpretation of Fig. 4 is that our local360

patient specific QA program (i.e., γ criteria of 3%/3 mm)361

is not able to efficiently detect random MLC errors below362

0.5 mm since we measured AUC of approximately 0.5 for this363

magnitude of error. This implies the test behaves more like a364

random guess of “pass” or “fail.” If our center required the365

detection of random MLC positioning errors in the order of366

0.3 mm, Fig. 4 indicates that the devices used in our patient367

specific QA program cannot meet this requirement. However,368

from Fig. 4, we also note that test sensitivity and specificity369

increase rapidly for random MLC positioning errors above 2370

mm and reaches near perfect detectability (AUC = 1) for er-371

rors above 3 mm. This result indicates that all unsafe deliv-372

eries (large errors present) will be detected when adequate373

patient specific QA is conducted, thus suggesting the use of374

patient specific QA as a safety tool rather than a tool to ensure375

high quality treatments.376

Figure 5 shows the ideal threshold values for 2 γ -based377

criteria used in the detection of random MLC errors. The re-378

sults show that as the stringency of the criteria is increased379

(e.g., from 3%/3 mm to 2%/2 mm γ -based criterion), the380

optimal pass rate (to reach maximum sensitivity and speci-381

ficity) becomes more dependent on the size of error to be382

detected. For γ criteria of 3%/3 mm, the ideal pass rate in383

the detection of random errors above 3 mm is approximately384

92% (which produces the highest sensitivity and specificity).385

Detection of smaller errors (e.g., 2 mm) requires a higher pass386

rate.387

V. CONCLUSION 388

ROC methods can be applied to evaluate patient specific 389

IMRT QA programs. A method has been demonstrated where 390

non-ideal irradiation conditions were simulated by introduc- 391

ing random errors in MLC position during beam delivery. 392

Beam fluences similar to those in prostate IMRT were stud- 393

ied using several criteria. Distributions of true negative and 394

true positive test results were generated. These were compiled 395

as ROC plots which allowed some quantifiable measures to 396

be applied to the patient specific IMRT tests. To the authors 397

knowledge, this is the first demonstrated use of ROC method- 398

ology applied to IMRT patient specific QA. 399

ROC analysis may be useful to understand the extent and 400

limits to detect errors with an IMRT QA program. From the 401

analysis, we conclude that the predictive power of patient spe- 402

cific QA is limited by the size of error to be detected; for the 403

equipment used in our center, we were able to attain nearly 404

100% sensitivity and specificity in the detection of random 405

MLC errors with a standard deviation >3 mm, which we 406

feel defines a safety component. Sensitivity and specificity 407

decrease rapidly for all gamma and measurement criteria as 408

the size of error to be detected decreases below 2 mm. The 409

predictive power of our patient specific QA program is null 410

(test result is a random guess) regardless of criteria used in 411

the detection of random MLC errors with a standard deviation 412

<0.5 mm. 413
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