ACR–AAPM TECHNICAL STANDARD FOR THE PERFORMANCE OF HIGH-DOSE-RATE BRACHYTHERAPY PHYSICS

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, ___ N.W.2d ___ (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This standard was revised collaboratively by the American College of Radiology (ACR) and the American Association of Physicists in Medicine (AAPM).

Brachytherapy is a method of treatment in which sealed radioactive sources are a radiation source(s) is used to deliver radiation by interstitial, intracavitary, intraluminal, or surface application. This standard has been developed by the American College of Radiology (ACR) to outline a standard of physics practice related to one area of this modality: the use of remotely loaded high dose rate (HDR) brachytherapy sources. The extremely high source strength (or activity) of the HDR source, typically iridium-192 in the range of 148 to 320 407 GBq (4 to 10 11 Curies), permits delivery of the prescribed dose in several minutes. This procedure is usually carried out on an outpatient basis.

Since the practice of HDR brachytherapy physics occurs under a variety of settings, the judgment of a Qualified Medical Physicist (QMP), in conjunction with a physician radiation oncologist, should be used to apply these standards to individual practices. Finally, radiation safety requirements must be in compliance with appropriate federal and state regulations.

While a number of reference documents are recommended for suggested reading, three documents represent the basis from which much of this technical standard evolved. These are the American Association of Physicists in Medicine (AAPM) Code of Practice for Brachytherapy Physics [1], the AAPM Task Group Report on High-Dose-Rate Brachytherapy Treatment Delivery [2], and the AAPM Report on Comprehensive Quality Assurance in Radiation Oncology [3].

II. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

A. Qualified Medical Physicist

Refer to the General Radiation Oncology Guideline

A Qualified Medical Physicist is an individual who is competent to practice independently in one or more of the subfields in medical physics. The American College of Radiology considers certification, continuing education, and experience in the appropriate subfield(s) to demonstrate that an individual is competent to practice one or more of the subfields in medical physics, and to be a Qualified Medical Physicist. The ACR strongly recommends that the individual be certified in the appropriate subfield(s) by the American Board of Radiology (ABR), the Canadian College of Physics in Medicine, or by the American Board of Medical Physics (ABMP).

A Qualified Medical Physicist should meet the ACR Practice Parameter for Continuing Medical Education (CME), (ACR Resolution 17, 1996 – revised in 2012, Resolution 42) [4]

The appropriate subfield of medical physics for this standard is Therapeutic Medical Physics (including medical physics certification categories of Radiological Physics, Therapeutic Radiological Physics and Radiation Oncology Physics).

In addition, the Qualified Medical Physicist must meet any qualifications imposed by the state and/or local radiation control agency to practice radiation oncology physics and/or to provide oversight of the establishment and conduct of the physics quality management program.

Where required, the Qualified Medical Physicist must have a license to practice therapeutic radiological medical physics. Similarly, depending on the bylaws of the relevant hospital/institution the credentials and delineated
privileges for the Qualified Medical Physicist should be confirmed through the medical staff membership process in the appropriate category since clinical brachytherapy physics involves direct contact with patients and their hospital records.

In the case of HDR brachytherapy, the Qualified Medical Physicist is recognized as an Authorized Medical Physicist (AMP) by federal and state regulatory authorities. The Qualified Medical Physicist should be an Authorized Medical Physicist in accordance with applicable U.S. Nuclear Regulatory Commission or Agreement State requirements. In addition to meeting the requirements of a qualified medical physicist, the AMP must also meet specific state and local training and education requirements.

B. Medical Dosimetrist

Certification by the Medical Dosimetrist Certification Board is recommended. The Medical Dosimetrist activities should be performed under the supervision of a Qualified Medical Physicist responsible for the HDR procedure.

C. Radiation Therapist

The radiation therapist must fulfill state licensing requirements and should have American Registry of Radiologic Technologists (ARRT) certification in radiation therapy.

III. RESOURCES

A. Personnel Requirements

Active brachytherapy programs require additional physics and support personnel beyond that required for external beam therapy due to the uniqueness and relative complexity of each case. As a special procedure, HDR brachytherapy requires significant time commitment by the physicist to develop and maintain high standards for quality procedures and to provide documentation to comply with regulatory agencies. Consequently, these non-clinical aspects should be included when budgeting personnel requirements.

B. Equipment Needs

Each facility must have instrumentation to independently verify the source strength or activity provided by the manufacturer. This must be done with a well ionization chamber and electrometer or other suitable instrument(s) with calibration performed by an accredited dosimetry calibration laboratory (ADCL) traceable to the National Institute of Standards and Technology (NIST) or by a calibration laboratory accredited by the AAPM. The chamber calibration must be performed every 2 years and after any servicing that may have affected the systems calibration [5,6].

Calibrated survey instruments that are appropriate in energy response and range for the sources used must be available for use at all times [5,6]. A backup survey meter should be readily available in case of primary instrument failure. The primary survey instrument must be calibrated by an ADCL and the backup survey instrument may be calibrated by inter-comparison with the primary survey instrument.

The facility must have instrumentation to perform periodic sealed-source leak testing or arrange to have this service provided in compliance with applicable federal or state regulations.

Appropriately local shielding, storage facilities, transportation containers, shielded treatment rooms, storage containers for emergency use, and manipulation devices for emergency use must also be available.
A computerized treatment planning system for volumetric image guidance (CT, ultrasound, etc), applicator reconstruction, and isodose computation must be available to calculate point doses, to generate isodose distributions, and to compute dose-volume statistics.

Proper maintenance, calibration, quality control and updating of this update of all HDR equipment must be carried out by a Qualified Medical Physicist or under the supervision of a Qualified Medical Physicist.

IV. QUALITY ASSURANCE PROGRAM

Quality assurance (QA) refers to those administrative policies, quality improvement (QI) procedures, and quality control (QC) measures and consideration of quality improvement objectives that ensure a consistent and safe fulfilment of the treatment prescription. Measurements that ensure a consistent and safe fulfillment of the dose prescription. The Qualified Medical Physicist is responsible for a QA program that maintains the scientific records regarding appropriate description, calibration, and the current strength of the source strength in order to assure accurate delivery of the prescribed dose to the specified volume [7]. The complexity of brachytherapy procedures necessitates that comprehensive QA include treatment related devices [planning and imaging systems, applicators, radioactive source(s), and delivery system(s)], and the clinical process [8]. The Qualified Medical Physicist should work closely with the radiation oncologist and other members of the brachytherapy team to build consensus and document the clinical workflow and resources for specific anatomical sites and treatment modality combinations.

Quality control for sealed brachytherapy sources includes maintaining an ongoing review for adherence to regulatory and licensing requirements. Accordingly, the Qualified Medical Physicist must develop, implement, supervise, and review the policies and procedures for use of the HDR source and maintain proper written documentation [9]. When these activities relate to radiation safety, they should be carried out in compliance with the guidelines established by the institutional radiation safety program.

The Qualified Medical Physicist should institute a documented peer-review mechanism for reviewing the brachytherapy physics program. The review should preferably be performed by a Qualified Medical Physicist that is independent of the program under review. The review should be performed annually. When reviews are performed on a less frequent basis, the time between reviews should not exceed three years [10] on a yearly basis.

A. HDR Sealed Sources

Since the radiation characteristics of the encapsulated source depend on its physical and chemical form, as well as the source encapsulation and the distribution of the activity within the source, the Qualified Medical Physicist must take these factors into account to properly determine the radiation distribution around the source.

1. Calibration of HDR sources

The Qualified Medical Physicist must determine that the measured source strength is accurate to within plus/minus 3% of that reported by the manufacturer and establish acceptable limits of accuracy for measurements of source strength as well as a course of action if the source strength does not fall within these limits.
All HDR sources must be calibrated at the institution prior to their first clinical use. Written documentation of the calibration indicating the source type, source strength, the date of calibration, the equipment used in the calibration, the dosimetry protocol, and the name of the Qualified Medical Physicist responsible for the calibration should reside at the treatment delivery unit. The current source strength must be entered in the treatment-planning computer. An additional qualified individual should perform a second check of the calibration.

a. New HDR Sources

There continues to be development of radioactive sources for use in HDR brachytherapy. Ytterbium-169 and Thulium-170 have been investigated recently. Each of these sources has some characteristics that make it potentially attractive for use in HDR. No consensus dataset is available since no commercially available source model exists. The following table is provided to highlight the comparable characteristics of these sources and does not imply endorsement of any particular source or source model.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Ir-192</th>
<th>Yb-169</th>
<th>Tm-170</th>
<th>Co-60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>MicroSelectron/HDR</td>
<td>M42</td>
<td>Stainless steel encapsulation</td>
<td>Bebig Co0.A86</td>
</tr>
<tr>
<td>Avg photon energy (Mev)</td>
<td>0.380</td>
<td>0.093</td>
<td>0.066</td>
<td>1.17, 1.33</td>
</tr>
<tr>
<td>Half Life (days)</td>
<td>73.83</td>
<td>32.2</td>
<td>128.6</td>
<td>5.26 years</td>
</tr>
<tr>
<td>Air Kerma Strength</td>
<td>4.082E04</td>
<td>1.083E-6</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Dose Rate Constant</td>
<td>1.15</td>
<td>1.14</td>
<td>1.23</td>
<td>1.087</td>
</tr>
<tr>
<td>Radial Dose Function (r=0.5cm)</td>
<td>0.997</td>
<td>0.965</td>
<td>0.969</td>
<td>1.036</td>
</tr>
<tr>
<td>Radial Dose Function (r=5.0cm)</td>
<td>0.987</td>
<td>1.195</td>
<td>1.13</td>
<td>0.936</td>
</tr>
<tr>
<td>Anisotropy Function (r=1.0 cm) 50 degrees</td>
<td>0.965</td>
<td>0.945</td>
<td>0.88</td>
<td>0.998</td>
</tr>
<tr>
<td>Anisotropy Function (r=5.0cm) 50 degrees</td>
<td>0.969</td>
<td>0.905</td>
<td>Not reported</td>
<td>0.998</td>
</tr>
</tbody>
</table>

2. Instrumentation

The constancy of the ionization chamber used for calibrating the HDR source must be checked with a long-lived sealed source upon receipt, after repair, and prior to each use. The ionization chamber must be calibrated at least every 2 years at an ADCL facility. The sensitivity, linearity, and reproducibility of the instrument must be documented at least annually.

3. Treatment delivery unit

Computer-controlled HDR treatments are to be carried out with a high degree of precision and accuracy. The Qualified Medical Physicist should establish a QC program to assure that the intended accuracy and precision are met and maintained. Autoradiographs or another suitable method approved by the Qualified Medical Physicist must be performed on the HDR sources prior to initial use to determine that the source moves to the intended dwell positions in the applicator and to determine the discrete step-size spacing between dwell positions. The desired mechanical accuracy and precision are 1 mm or less [5]. Accuracy
and linearity of the source dwell time must also be determined. The program must be consistent with regulatory requirements.

The QC testing should demonstrate that the HDR source can execute the treatment plan with a high and predetermined degree of fidelity.

4. Brachytherapy applicators

The Qualified Medical Physicist must determine that the source can travel accurately to intended locations in the applicators and must determine the coincidence of the dwell positions of the dummy markers and the active source. The location of shields for intracavitary applicators must be checked prior to initial use. Such applicators should be radiographically inspected annually. Applicators and transfer tubes must be physically inspected prior to each use. For appropriate interstitial applicators, esophageal applicators, and pulmonary catheters the coincidence of dummy markers and the active source dwell positions must be verified prior to initial use. All brachytherapy applicators and transfer tubes should include visual and radiographic inspection annually, or as required per state regulations. In addition, the Qualified Medical Physicist should follow the manufacturer’s recommendations for replacement of any applicators or transfer tubes should they reach their expected lifetimes.

5. Radiation safety

Radiation safety practices must be consistent with the institution’s radioactive material license, license amendments, and existing regulations [5,6]. The Qualified Medical Physicist in conjunction with the radiation safety officer should be responsible for developing, overseeing, and documenting radiation safety procedures, including, but not limited to: written procedures regarding ordering, receiving, returning, and/or disposing of HDR radioactive materials and for performing patient surveys following source removal.

a. Written procedures regarding ordering, receiving, returning, and/or disposing of HDR radioactive materials and for performing patient surveys preceding and following source removal.

b. An inventory control program sufficient to locate and identify the HDR source and all sealed sources at any time.

c. Emergency procedures for retrieving the HDR source from the patient.

d. Checking the functionality of the backup battery of the HDR unit.

e. Procedures for checking the safety interlocks and the audio and visual communications between the patient and operator of the treatment delivery unit.

f. Participation in training of professional and technical staff regarding HDR at least annually.

g. Presence and proper functioning of the in-room radiation monitors and its backup battery, the warning light, and the portable survey instrument.

h. Assuring the security of the HDR unit.

i. After each source change, the old source must be placed inside the vendor-supplied container with proper paperwork and shipping label attached, sealed and locked up securely inside the treatment room or appropriately secure hot lab room. The user should arrange for pickup of the container to return to the vendor within 24 hours of source change and ensure a confirmation of the receipt of the source from the manufacturer is received within days to assure its safe delivery.

Treatment Planning and Dosimetry

Treatment planning for all implants should include at a minimum, the determination of the appropriate isodose distribution. A consistent means of specifying and documenting absorbed dose must be in place.
Treatment planning specifications should include, at a minimum, a description of technique and applicator, source strength(s), the anatomical description of target volume, dose to target volume, dose to reference and/or tolerance points. Isodose distributions in orthogonal planes containing the points of interest should also be included. Except for HDR procedures with well-defined applicator and treatment volume geometries, such as vaginal cylinders for endometrial cancer, imaged-based volumetric computerized treatment planning algorithms that provide a means to conform the dose distribution to the target and minimize the dose to tissue at risk should be used. The time-dose pattern, anatomical description of the target volume, dose to the target volume, and volumetric dose statistics should be determined if 3D patient imaging information is used. Prior external beam and brachytherapy doses to target volumes should also be documented with every treatment plan. While treatment planning systems and control console computers update the source activity every 12 or 24 hours, a Qualified Medical Physicist should check the source activity before each treatment to ensure that the computer updated activity is correct. In addition, any manufacturer recommendations concerning adjustments based on “daylight savings time” should be followed.

Mathematical corrections for decay of source strength or activity should be made at intervals consistent with 1% physical decay (typically daily for iridium-192) [5], each day of use for iridium-192.

1. Image-guided HDR procedures Localization—dosimetry images

 a. Image-guided applicator/source localization: Image-guided procedures are becoming the standard of care. 3D image-based brachytherapy has been shown to improve local control and overall survival, and significantly reduce toxicity. There are a number of uses of various imaging modalities to achieve high quality delivery of brachytherapy [6-12,15,16,18-21]. For cervical cancer, MRI-based treatment planning with applicators in situ has been shown to be superior to the conventional film-based methodology, both in delineation of targets and organs-at-risk as well as in dose planning. On the other hand, CT-based HDR treatment planning of the cervix may have larger uncertainties in delineation of CTV and certain organs-at-risk.

As the prescription in MRI or CT-based treatment planning has migrated away from the conventional prescription point approach to one which is based on volume coverage, the accuracy in contouring, image reconstruction and dose optimization are new concepts for radiation oncologists and Qualified Medical Physicist in HDR brachytherapy. Groupe Européen de Curiethérapie (GEC) European Society for Radiotherapy and Oncology (ESTRO) has published guidelines for image-based HDR of cervix [18,22]. In lieu of similar guidelines in the United States, medical physicists involved in the image-based HDR for cervix may want to consult the GEC ESTRO guidelines for a successful implementation of the IGRT program. The ACR–ASTRO Practice Guideline for Image-Guided Radiation Therapy (IGRT) [23] and its update also contain relevant information on the image-guidance, which should be consulted.

The Qualified Medical Physicist must ensure the spatial resolution, fidelity, applicator compatibility, and appropriate use of each imaging modality. Also, the Qualified Medical Physicist must ensure that proper acceptance testing and commissioning as well as a documented QA program is in place for each system prior to its clinical use [24-26].
The position of all intracavitary, intraluminal, and interstitial implants must be verified before treatment with appropriate medical imaging modalities. Images should be acquired with the patient in the treatment position. The responsible radiation oncologist should be present with the Qualified Medical Physicist or dosimetry personnel during applicator localization. Prior to treatment initiation, the localization images should be approved by the responsible radiation oncologists.

MRI-based HDR planning for prostate has also become more popular recently. However, this is still an emerging modality and not mature enough for this collaborative committee to provide recommendations at the present time.

The medical physicist, dosimetry personnel, or responsible radiation oncologist should be present during the localization of the applicators. Imaging should be done in the treatment position.

2. Computerized planning systems

Computerized planning systems must undergo rigorous acceptance tests and commissioning to ensure that the dose calculation algorithm properly converts the source calibration and conversion factors into the appropriate absorbed dose distribution including dose volume statistics, if available, and that hardware and software were installed properly [5,11,12,27]. The handling of image data and its use in dose calculations must also be verified for accuracy in comparison (where appropriate) to well established methods of dose calculation. Model-based treatment planning system algorithms and the use of heterogeneity corrections have increased the complexity of the dose calculations that may be employed in brachytherapy [27-29]. Heterogeneity corrections have only recently been made available to the brachytherapy community. AAPM Task Group 186 [27] has raised the major issues in dose calculations that are not addressed by current guidance documents which are water-based (Task Group 43 and its updates and supplements). The Qualified Medical Physicist should consult Task Group 186 for appropriate implementation of the recommendations to improve the accuracy in dose calculations, especially in image-based HDR dose planning.

These new approaches need to be implemented with great care. All users must receive proper training. An in-service program should be given for new users and, when appropriate, provided to all users following software releases. A written treatment planning system QA program must be implemented to ensure the accuracy of dose calculation algorithms, software changes, hardware changes, and source data files [30]. to ensure that the hardware and software were installed properly. Heterogeneity corrections should be verified. In-service training should be given for new users and, when appropriate, provided to all users following major software releases. All training should be documented.

Periodic tests must be implemented to ensure the continued accuracy of dose calculation algorithms; to ensure that software changes, including editing of source data files, were implemented correctly and have not corrupted the source data; and to ensure that any hardware changes were installed properly.

3. Plan review Patient dose calculation

The treatment plan should be independently reviewed by the radiation oncologist and a Qualified Medical Physicist or dosimetrist not directly involved with the generation of the treatment plan. The plan review may include, but not be limited to:

a. Patient demographic information
b. Plan dose/prescription conforms to the written directive
NOT FOR PUBLICATION, QUOTATION, OR CITATION

c. Applicator type, applicator size, implant geometry and applicator reconstruction, and source positions

d. Radionuclide, source configuration and strength, date of implant, implant duration

e. Volumetric dose coverage of the target and dose constraints of tissue/organs at risk

4. Independent dose calculation

An additional and independent method from the treatment planning system should be used to validate the dose calculation results of the computerized planning systems, such as the point dose verification to specific points in the dose distributions. This validation should be consistent with the written prescription, source positions, and source strength. This plan verification step should be completed prior to treatment initiations. Target dose deviations greater than 5% should be investigated and resolved prior to treatment. and completed before the dose is delivered.

The source positions entered into the treatment planning systems should be verified by a method approved by the medical physicist. This method may be as simple as superimposing the source dwell positions and resulting isodose distributions on the appropriate medical image. The final treatment plan must be reviewed and signed by a medical physicist prior to the implementation.

B. Clinical Medical Physics Management

1. Routine clinical practice

The Qualified Medical Physicist or medical dosimetrist must be available during the image acquisition phase of the HDR planning to ensure that all information necessary for planning is properly acquired (e.g., dummy marker placement/labels). Personnel present (physician, medical physicist, dosimetrist, and/or therapist) present at the HDR console during the treatment of the patient must at a minimum be trained in emergency procedures and operation of the afterloader. While training provided by the manufacturer is preferred, in-house training provided by an individual having received prior manufacturer training is sufficient. Appropriately trained personnel must be present at the HDR console during the treatment of the patient.

Administration of HDR brachytherapy must be personally supervised by an authorized user and a Qualified Medical Physicist, trained in emergency procedures and operation of the afterloader.

2. Medical physics consultation

The Qualified Medical Physicist must develop and implement a program for review and analysis of patient status including changes to the physics aspects of the treatment regime, consultation on and participation in patient setup and treatment modifications, and reviews of patient-specific treatment and technical notes.

3. Dose delivery quality assurance

The Qualified Medical Physicist must develop a process to assure that the technical aspects of the HDR treatment are correct for the specific patient prior to each treatment. For multifraction HDR, such a process should include validation that parameters used for treatment of the first fraction are appropriately corrected for source activity and remain valid for the remaining treatment fractions if a new plan is not created. Imaging techniques that monitor the constancy of the HDR applicator/catheters relative to the target tissues and tissues at risk should be considered for use as documentation in the validation process.
Additionally, all multicatheter/applicator treatments should include a procedure to assure that the correct source treatment channel is connected to the correct catheter/applicator. Lastly, prior to each treatment, a “dry run” with the dummy source should be done to ascertain that all catheters/applicators are unobstructed to permit activation of all dwell positions in all catheters/applicators that contribute to the dose distribution.

4. Dosimetry report

For each brachytherapy procedure a dosimetrist or Qualified Medical Physicist must complete a written dosimetry report. The report should include but not be limited to the following items:

a. Description of the source
b. Updated source strength for the treatment
c. Description of the technique and source pattern used.
d. Dose delivered, dwell positions, and total number of dwell positions; total time, source strength.
e. Total number of dwell positions.
f. Dwell time at each position, and total dwell time.
g. Reference position (e.g., distance to farthest dwell) for each applicator channel.
h. Step size between dwell positions.
i. Isodose distributions in three orthogonal planes through the implant or other appropriate planes or other expressions of dose at various points delineated by physicians, specified with or without heterogeneity correction.
j. Relevant dose volume statistics (DVH).
k. Evidence of independent validation of dose calculations.

The report must be signed by the Qualified Medical Physicist and the responsible radiation oncologist.

5. Post treatment survey

After the source has been retracted at the end of the delivery, the Qualified Medical Physicist must complete a post treatment radiation survey of the patient, transfer tube(s) and the HDR unit with a calibrated survey meter to ensure that the source is indeed retracted inside the HDR unit. The post treatment survey must be documented as part of the treatment record.

C. New Procedures

In conjunction with the physician-authorized user, the Qualified Medical Physicist must define basic standards of practice and develop a reasonably prudent course of action to determine the quality and safety of any new procedures prior to initiation. New devices and/or applicators must be evaluated with respect to integrity, suitability for use with the HDR radioactive sources, and effects on dose distributions. This evaluation must be prepared as a written report of the evaluation must be distributed in accordance with institutional policy.

V. DOCUMENTATION

The Qualified Medical Physicist is responsible for maintaining proper, complete, and accurate records required by regulatory agencies and accrediting bodies. Records documenting the results and frequency of performance of the quality maintenance program, including quality integration procedures and results of QC measurements, QA checks, QC measures and QI objectives are important; both in retrospective analysis of trends and in documenting current status. It is recommended that a mechanism be established to review these records with the medical director and administration on a documented, periodic basis.
ACKNOWLEDGEMENTS

This technical standard was revised according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR web site (http://www.acr.org/guidelines) by the Committee on Practice Parameters and Technical Standards – Medical Physics of the ACR Commission on Medical Physics in collaboration with the AAPM.

Collaborative Committee
Members represent their societies in the initial and final revision of this technical standard.

ACR AAPM
Charles M. Able, MS, Co-Chair Nayha Dixit, MSc
Chee-Wai Cheng, PhD, Co-Chair Zoubir Ouhib, MS
John W. Winston, Jr., MS Joann I. Prisciandaro, PhD

Committee on Practice Parameters and Technical Standards – Medical Physics
(ACR Committee responsible for sponsoring the draft through the process)

Tariq A. Mian, PhD, FACR, FAAPM, Chair
Charles M. Able, MS
Maxwell R. Amurao, PhD, MBA
Ishtiaq H. Bercha, MSc
Caridad Borras, DSc, FACR
Chee-Wai Cheng, PhD, FAAPM
Ralph P. Lieto, MS, FCR, FAAPM
Matthew A. Pacella, MS
William Pavlicek, PhD
Douglas E. Pfeiffer, MS, FCR, FAAPM
Thomas G. Ruckdeschel, MS
Christopher J. Watchman, PhD
John W. Winston, Jr., MS

Richard A. Geise, PhD, FCR, FAAPM, Chair, Commission on Medical Physics
Debra L. Monticciolo, MD, FACR, Chair, Commission on Quality and Safety
Julie K. Timins, MD, FACR, Chair, Committee on Practice Parameters and Technical Standards

REFERENCES

24. American College of Radiology. ACR technical standard for diagnostic medical physics performance monitoring of real time ultrasound equipment. 2011; Available at:

Suggested Reading (Additional articles that are not cited in the document but that the committee recommends for further reading on this topic)

Practice parameters and technical standards are published annually with an effective date of October 1 in the year in which amended, revised or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Technical Standard
2000 (Resolution 18)
Revised 2005 (Resolution 18)
Amended 2006 (Resolution 16g)
Revised 2010 (Resolution 6)