Breast MRI: Pulse Sequences, Acquisition Protocols, and Analysis

Ron Price
Vanderbilt University Medical Center
Nashville, TN 37232

Objectives
1. Review background of MRI breast cancer imaging
2. Present technical challenges of breast MRI
3. Discuss typical pulse sequences
4. Describe typical image acquisition protocols
5. ACR requirements for pulse sequences and protocols
6. Discuss new approaches to image review and analysis

Scientific Background for Current Breast MRI Protocols

Importance of Both Lesion Enhancement and the Enhancement Pattern

Degree of Enhancement Alone:
- Sensitivity: 91%
- Specificity: 83%
- Accuracy: 86%

Both Enhancement and Curve Type
- Sensitivity: 91%
- Specificity: 83%
- Accuracy: 86%

Group size: 266 cases, 101 cancers

Recent study finds that false-positive rate falls following initial baseline study: 12% to 5.6%

Challenges in DCE Breast Imaging

1) Enhancing lesions result from Gd contrast agent "leaking" from poorly formed blood vessels within and around the malignant tumor.
2) The contrast agent shortens the T1 of the lesion relative to the surrounding normal tissues and thus may be detected as bright regions on T1-weighted images, provided there is adequate signal-to-noise (SNR).
3) The breast has significant adipose (fatty) tissues, also with short T1, thus a significant background: fat-suppression or subtraction is essential.
4) High 3D spatial resolution for small-lesion detection and shape assessment.
5) Enhancement patterns are critical to differentiation of benign and malignant masses, high temporal resolution is also essential.
6) Full simultaneous coverage of both breasts; comparison and disease extent
7) Image artifacts must be minimized: motion (cardiac and breathing), out-of-volume wrap and non-uniform fat-suppression.

Unfortunately: SNR, spatial resolution, volume coverage and imaging time all compete with one other and artifact free images may be difficult to obtain.
An MR pulse sequence that can meet all of these technical requirements is a significant challenge.
DCE T1-weighted images without fat suppression must utilize image subtraction to minimize background.

Approaches to Fat Suppression

1. Short TI inversion recovery (STIR) sequences: (Acquire at null-point of fat T1 recovery, Mz = 0)
2. Sequences with frequency selective pre-pulses: (FATSat, CHESSat, CHESS, R3Sat)
3. Combined frequency selective and inversion recovery:
 - SPVR (Spectral Presaturation with Inversion Recovery)
 - SPAIR (Spectral Adiabatic Inversion Recovery)
4. Phase-cycling: 3.5 ppm difference in precessional frequency
 - Dixon method, in-phase/out-of-phase of fat and water signal using selected echo times in gradient-echo sequences.
5. Highly water-selective binomial RF excitation (e.g., 1-3-3-1)
 - SPIR (Spectral Presaturation with Inversion Recovery)
 - SPAIR (Spectral Adiabatic Inversion Recovery)
6. Subtraction of pre-contrast images from post-contrast images

Frequency Selective Fat Suppression

1. Sequence “pre-pulse” at resonant frequency of fat with pulse bandwidth set for appropriate volume coverage.
2. Nominal fat frequency located at 3.5 ppm below water frequency.
3. Important to have homogeneous B0 field
4. B0 field will be affected by magnetic susceptibility of patient: Importance of good auto-shimming.

Frequency-Selective Fat Suppression Pre-pulse

1. A 90° pulse centered at the fat frequency re-orient the fat protons into the transverse plane, in phase. The spoiling gradients are then used to destroy (crush or scramble) the coherence of the transverse magnetization to ensure that fat does not contribute to the signal or
2. a SPAIR pre-pulse that is a 180° inverting pulse followed by a spoiler gradient.

What spatial resolution and SNR is required?

Basically, the answer is the best you can get and still maintain the necessary SNR and temporal sampling.

ACR established guidelines:
1. < 1.0 mm X 1.0 mm in-plane pixel size
2. < 3 mm slice thickness (with no slice-gap)
3. “not too grainy”

Dynamic Bilateral Contrast-enhanced MR Imaging of the Breast: Trade-off between Spatial and Temporal Resolution

Comparison:
1. 1.25 X 1.25 mm pixel vs 0.6 X 0.8 pixels
2. Correctly upgraded BI-RADS scores in 13 of 26 cancers
3. Correctly down-graded 10 of 28 benign lesions
What determines adequate temporal sampling?

Enhancement Pattern for Focal Invasive Cancers
(Type III Enhancement Curve)

Time-to-peak enhancement ~ 1-3 minutes

0 1 2 3 4 5 6 7
(Minutes after contrast agent injection)

Adequate Temporal Sampling is Essential for Correct Enhancement Curve Classification

Type III

Temporal Sampling rate of >2 minutes (may be marginal for confident classification)

Type III

Temporal Sampling rate of 1 minute (accurate curve classification)

Gadolinium Contrast Agent: Rate and Volume

1) For accurate timing and consistency, power injector preferred
2) 0.1 mmol/kg (Typically, 10-20 ml volume)
3) Rate ~ 2 ml/s, w/saline flush

Rapid temporal sampling with 3D pulse sequences may require parallel imaging with multi-element coils.

Example of image acquisition time with a bilateral 16-channel coil with parallel-imaging acceleration factor of 5.6.

Note: May need to contact vendor representative for some of this information.

Acquisition time = TR X slice phase matrix X in-plane phase matrix X NSA

Example: FOV = 250 mm, Matrix = 356 X 356 X 200 (SENSE)

TE/TR/φ = 3.2 ms/6.5 ms/100

In-plane phase matrix = 356 (0.7 mm X 0.7 mm)

Slice phase matrix = 200 (1.25 mm slice thickness)

SPAIR (Spectrally selective Adiabatic IR) Fat-suppression

Acq. Time = 0.0065 sec X 200 X 356

2.8 (phase) X 2.0 (slice) = 83 sec

Image contrast is determined by when the center of k-space is acquired, one k_0 step each TR interval. Thus, the center of k-space (k_0 = 0, k_x = 0) should be timed to coincide with the arrival of the Gd contrast agent.

The center of k-space occurs when the zero-strength phase-encoding gradients are applied. For 3D phase encoding is applied in two directions: slice and in-plane phase.

Center - contrast

Periphery - resolution

Mezrich R, A Perspective on k-space: Radiology 1995; 195:297-315

Paschal CB and Morris HD: k-space in the Clinic, JMRI 19(2) 145-159 (2004)
Typical Breast MRI Protocol
(Image acquisition time ~15-20 minutes)

1) Scout Images (~1 minute)
2) Pre-contrast (~5-7 minutes)
 i. T1-weighted no-fat suppression (fat/glandular morphology)
 ii. T2-weighted with fat suppression (bright fluid for cysts)
 iii. High-resolution, 3D T1-weighted fat-suppressed gradient-echo sequence (pre-contrast baseline image of identifying enhancing lesions)
3) Post-contrast (5-5 volume acquisitions = 10 minutes)
 Dynamic multi-phase 3D T1-weighted fat-suppressed GE sequence (Note: Pre-contrast and post-contrast images must have identical image parameters to allow subtraction.)
4) Analysis
 i. Subtraction of pre-contrast and post-contrast images (identify enhancing lesions)
 ii. Dynamic contrast curve evaluation (enhancement pattern assessment)
 iii. Maximum Intensity Projection (MIP) images of subtracted images (vascular bed assessment)
ACR Accreditation Pulse Sequence Requirements

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2-Weighted Bright Fluid Series</td>
<td>Adequate SNR, not too gray</td>
</tr>
<tr>
<td></td>
<td>Sufficient bright fluid-contrast</td>
</tr>
<tr>
<td>Multi-Phase T1-weighted Series</td>
<td></td>
</tr>
<tr>
<td>Pre-Contrast T1</td>
<td>Adequate SNR, not too gray</td>
</tr>
<tr>
<td>Early Phase (10%) Post-Contrast T1</td>
<td>Adequate SNR, not too gray</td>
</tr>
<tr>
<td></td>
<td>Complete within 4 minutes of injection</td>
</tr>
<tr>
<td></td>
<td>Technical factors match pre-contrast T1</td>
</tr>
<tr>
<td>Delayed Phase (60%) Post-Contrast T1</td>
<td>Adequate SNR, not too gray</td>
</tr>
<tr>
<td></td>
<td>Technical factors match pre-contrast T1</td>
</tr>
</tbody>
</table>

For the pre-contrast and post-contrast T1-weighted series, the following parameters may be used:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Slice Thickness</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittal</td>
<td>3 mm</td>
<td>3 mm</td>
</tr>
<tr>
<td>Axial</td>
<td>3 mm</td>
<td>3 mm</td>
</tr>
<tr>
<td>Coronal</td>
<td>3 mm</td>
<td>3 mm</td>
</tr>
</tbody>
</table>

Acquisition time ≤ 4 minutes (delay + time to acquire a single image volume)

Analysis of DCE images: CAD programs may improve consistency of breast MRI interpretation

CAD program attempt to automatically identifies lesion by:
1) Enhancement threshold
2) Persistence of enhancement
3) Initial peak enhancement

Output from commercially available analysis program with automatic color-coding of wash-out curve category.

Future: Kinetic Modeling for estimating Tumor extravasation rate constant: K_{trans}
Extravascular-extracellular volume fraction: V_e

Repeatability of a Reference Region Model for Analysis of Multiple DCE-MRI Datasets at TT

DCE kinetic modeling for assessing breast cancer therapy response.

Pre-therapy
Post-therapy

Imaging of quadrature DCE-MRI and DCE-spectroscopy in molecular treatment response in human breast cancer: initial results

Conclusions

Current imaging protocols for breast cancer assessment rely upon dynamic contrast enhanced (DCE) MRI to provide clearly detectable lesion enhancement as well as an accurate characterization of the lesion enhancement pattern.

To meet these clinical requirements, the technical elements for breast MRI are:
1) A dedicated breast-coil array to provide high SNR images and simultaneous coverage of both breasts.
2) Fat-suppressed, T1-weighted 3D multi-phase gradient echo sequences with high in-plane spatial resolution (< 1mm x 1mm), thin slices (< 3mm) and good temporal resolution (~ 50sec) made possible by using parallel imaging.
3) Post-processing capability should provide post-contrast injection subtraction images, multi-phase time-intensity curves and maximum intensity projection (MIP) for 3D viewing and vascular maps.