Radiation Safety for Staff in Fluoroscopy Suites

Beth Schueler
Mayo Clinic
Rochester, Minnesota

Learning Objectives

- For staff performing fluoroscopically-guided interventional procedures:
 - What are typical radiation exposure levels?
 - How should the radiation exposure to staff be monitored?
 - What type of radiation safety education is needed?
 - Is there anything new and novel available that can help reduce staff exposure levels?
Resources

- Joint SIR / CIRSE Guideline for Occupational Radiation Protection in IR (Miller et al, 2010)

Operator Exposure During Fluoroscopy Procedures

<table>
<thead>
<tr>
<th>Procedure Type</th>
<th>Mean Dose per Procedure (µSv)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neck</td>
<td>Lens</td>
</tr>
<tr>
<td>Mixed general IR</td>
<td>30-325</td>
<td>300</td>
</tr>
<tr>
<td>ERCP</td>
<td>450</td>
<td>550</td>
</tr>
<tr>
<td>Endovascular surgery</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Percutaneous coronary intervention</td>
<td>10-130</td>
<td>10-170</td>
</tr>
<tr>
<td>Cardiac ablation</td>
<td>8-200</td>
<td>50-320</td>
</tr>
</tbody>
</table>
Typical Operator Exposure Levels

- Annual doses for a workload of 1000 procedures
 - Neck: 10-450 mSv
 - Lens of the eye: 10-550 mSv
 - Hand: 30-640 mSv

- Survey of interventional radiologists with a mixed workload (Marx et al, 1992)
 - Mean annual dose (dosimeter on chest over protective apron): 49 mSv (range: 3-115 mSv)

Mayo Clinic Rochester

- Mean: 73 mSv
Operator Exposure Levels

- Typical doses for operators performing fluoroscopically-guided interventional procedures are high
 - May exceed annual dose limits
 - Lens of the eye: 150 mSv
 - Hands: 500 mSv
 - Values generally well exceed those for other healthcare workers
 - Annual US healthcare workers (NCRP Report No. 160): 81% with recordable dose are < 1 mSv

Personnel Dose Monitoring

- Due to the potential for high occupational doses, appropriate monitoring is critical
- Monitoring considerations:
 - 1-dosimeter or 2-dosimeter monitoring?
 - Dose calculation method?
 - When should dose readings be investigated?
Personnel Dose Monitoring

1-Dosimeter Method:
At neck, outside apron

2-Dosimeter Method:
At neck, outside apron and at waist or chest, under apron

- Dosimeter method recommended (NCRP Report No. 168)
 - Provides an indication of apron attenuation
 - Allows for better estimate of operator effective dose
 - Dosimeters should be clearly labeled to avoid mix-ups

Beth Schueler, AAPM Annual Meeting 2011
Dose Assignment with Protective Aprons

- Various calculation models exist and state regulations vary
- CRCPD SSRs (Webster’s method)
 - $H_E = 1.5 \times \text{under-lead reading} + 0.04 \times \text{neck over-lead reading}$
 - H_E: effective dose equivalent
- NCRP Report No. 122 recommendation
 - $E = 0.5 \times \text{under-lead reading} + 0.025 \times \text{neck over-lead reading}$
 - E: effective dose

Operator Exposure During Fluoroscopy Procedures

<table>
<thead>
<tr>
<th>Procedure Type</th>
<th>Mean Annual Effective Dose* (mSv)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed general IR</td>
<td>2 - 15</td>
<td>NCRP 168</td>
</tr>
<tr>
<td>ERCP</td>
<td>21</td>
<td>NCRP 168</td>
</tr>
<tr>
<td>Endovascular surgery</td>
<td>23</td>
<td>NCRP 168</td>
</tr>
<tr>
<td>Percutaneous coronary intervention</td>
<td>0.2 - 9</td>
<td>Kim et al, 2008</td>
</tr>
<tr>
<td>Cardiac ablation</td>
<td>0.2 - 10</td>
<td>Kim et al, 2008</td>
</tr>
</tbody>
</table>

* assuming workload of 1000 procedures per year
Annual Dose Limits

- NCRP Report No. 116 recommendation:
 - Effective dose: 50 mSv

- ICRP Publication 60 recommendation:
 - Effective dose: 20 mSv, averaged over 5 years, not to exceed 50 mSv in a single year

Lens Exposure

- Annual dose limit recommendations (NCRP Report No. 116):
 - Lens of the eye: 150 mSv

- Measurements for an annual workload of 1000 procedures,
 - Lens of the eye (unprotected): 10-550 mSv
Lens Dose Estimation

- Exposure level at the eye is typically somewhat lower than at the neck
 - Lens:Neck dose ratio varies with C-arm angulation
- Neck dosimeter reading provides conservative estimate (NCRP No. 168)

Leaded Eyewear

- Typical lead equivalent thickness of radiation protective eyewear is 0.75 mm
 - 98% attenuation
- Actual lens dose is higher due to
 - Exposure from the side and from below
 - Backscatter from head
Leaded Eyewear

- Traditional style
 - 0.75 mm lead equivalent lenses
 - 120 g
 - 28 cm² surface area

Leaded Eyewear

- Sport-wrap style
 - 0.75 mm lead equivalent lenses
 - 59 g
 - 16 cm² surface area
Leaded Eyewear Attenuation

<table>
<thead>
<tr>
<th>Leaded Eyewear Style</th>
<th>Attenuation Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0° Angle</td>
</tr>
<tr>
<td>Traditional</td>
<td></td>
</tr>
<tr>
<td>Sport-wrap</td>
<td>8.3</td>
</tr>
</tbody>
</table>

New Guideline on Lens Exposure

- ICRP issued a new recommendation (ICRP, 2011)
 - Lower threshold for cataract formation: 0.5 Gy (previous threshold 2-5 Gy)
 - Lower occupational eye dose limit: 20 mSv/yr averaged over 5 years with no year > 50 mSv
Radiation-Induced Cataract

- Problems with earlier studies:
 - Short follow-up period – latency period is longer for low doses
 - Insufficient sensitivity to detect early lens changes
 - Few subjects with doses below a few gray

- Significant studies:
 - Chernobyl nuclear reactor accident cleanup workers (Worgul et al, 2007)
 - US radiologic technologists (Chodick et al, 2008)

Hand Dose

- Ring dosimeters recommended if hand dose > 50 mSv in a year (NCRP Report No. 168)
- Monitor for a trial period of several months for new staff and new procedure types
- Wear with sensitive area toward exposure source
 - Inward for under-table x-ray tube configurations
Investigation of Dose Readings

- Recommended investigation trigger level (WHO, 2000):
 - Effective dose > 0.5 mSv/month
 - Lens dose > 5 mSv/month
 - Hand dose > 15 mSv/month
- Verify validity of measurement
- Look for changes in procedure volume, procedure type, equipment, ...

It is common for personnel who may receive a high occupational dose to not wear their dosimeters to avoid investigations.

- 43% of surveyed interventional radiologists indicate they rarely or never wear monitoring dosimeters (Marx et al, 1992)
- Dosimeter readings that are lower than expected for a specific work assignment should also be investigated (NCRP Report No. 168)
Learning Objectives

For staff performing fluoroscopically-guided interventional procedures:
- What are typical radiation exposure levels?
- How should the radiation exposure to staff be monitored?
- What type of radiation safety education is needed?
- Is there anything new and novel available that can help reduce staff exposure levels?

Radiation Safety Education

- Credentials and privileges for fluoroscopy operators are needed
- Help for developing a program is coming
- AAPM TG 124 (Chair – Mary Moore)
 - “A Guide for Establishing a Credentialing and Privileging Program for Users of Fluoroscopic Equipment in Healthcare Organizations” is in the works
 - Will include suggestions to encourage your facility to approve a program, didactic content, evaluating competency and information resources for teaching
Occupational Radiation Safety Resources

- IAEA RPOP web pages
 - https://rpop.iaea.org/RPOP/RPoP/Cotent/InformationFor/HealthProfessionals/index.htm

- IAEA slide presentation series

- Image Gently pediatric IR presentation
 - http://www.pedrad.org/associations/A364/ag/

- RSNA/AAPM Online physics modules
 - “Radiation Safety and Dose in Interventional Radiology”
Learning Objectives

- For staff performing fluoroscopically-guided interventional procedures:
 - What are typical radiation exposure levels?
 - How should the radiation exposure to staff be monitored?
 - What type of radiation safety education is needed?
 - Is there anything new and novel available that can help reduce staff exposure levels?

Operator Shielding

- Overhead and table shields can be very effective
- But may be cumbersome for certain procedures:
 - C-arm angulation
 - Biliary or transjugular access
Orthopedic Complications from Lead Apron Use

- Back pain was reported by 50-75% of interventional physicians surveyed (Klein et al, 2009)
 - Compare to typical incidence of 27% in US adults
 - 25-30% reported that back problems had limited their work
- Options for relief
 - Lightweight aprons
 - Vest/kilt design

Radiation Protective Cabins

- ZeroGravity
 - 1.25 mm lead apron and 0.5 mm lead-equivalent face shield

Marichal et al, 2011
Radiation Protective Cabins

- **CATHPAX**
 - 2 mm lead walls and lead-equivalent windows

Dragusin et al, 2007

Real-time Personnel Dose Monitoring

- **DoseAware**
 - Displays cumulative dose and dose rate on a monitor
 - Can be networked between multiple procedure rooms
 - Allows for real-time feedback to avoid high scatter conditions and implement radiation reduction techniques

Sanchez et al, 2010
Heavy Metal Protective Patient Drapes

- **RADPAD**
 - Gel pad with tungsten-antimony
 - Sterile, dispose after procedure
 - 12× eye dose reduction
 - 29× hand dose reduction

Dromi et al, 2006

References

References (continued)

- Sanchez R, Vano E, Fernandez JM. Staff radiation doses in a real-time display inside the angiography room. Cardiovasc Intervent Radiol 2010; 33:1210-1214.