TG-166
Outcome driven treatment planning

X. Allen Li
On behalf of AAPM TG-166

AAPM, July 19, 2010
Evolution of biological (outcome-model) based treatment planning

<table>
<thead>
<tr>
<th>Evolution stage</th>
<th>Plan optimization strategy</th>
<th>Plan evaluation strategy</th>
<th>Representative TPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DV-based cost functions</td>
<td>DVHs</td>
<td>The majority of current TPS</td>
</tr>
<tr>
<td>1</td>
<td>EUD for OARs; EUD- and DV-based cost functions for targets</td>
<td>DVHs and relative values of TCP/NTCP</td>
<td>CMS Monaco Philips Pinnacle Varian Eclipse</td>
</tr>
<tr>
<td>2</td>
<td>EUD-based cost functions for all structures</td>
<td>Absolute values of TCP/NTCP</td>
<td>Future developments</td>
</tr>
<tr>
<td>3</td>
<td>Absolute values of TCP/NTCP</td>
<td>Absolute values of TCP/NTCP</td>
<td>Future developments</td>
</tr>
</tbody>
</table>
AAPM Task Group 166:

The use and QA of biologically related models for treatment planning

<table>
<thead>
<tr>
<th>X. Allen Li (Chair)</th>
<th>Markus Alber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph O. Deasy</td>
<td>Andrew Jackson</td>
</tr>
<tr>
<td>Kyung-Wook Ken Jee</td>
<td>Lawrence B. Marks</td>
</tr>
<tr>
<td>Mary K. Martel</td>
<td>Charles Mayo</td>
</tr>
<tr>
<td>Vitali Moiseenko</td>
<td>Alan E. Nahum</td>
</tr>
<tr>
<td>Andrzej Niemierko</td>
<td>Vladimir Semenenko</td>
</tr>
<tr>
<td>Ellen D. Yorke</td>
<td></td>
</tr>
</tbody>
</table>
TG-166 Charges:

• To review dose-response models introduced in TPS
TG-166 Charges:

• To review dose-response models introduced in TPS
• To discuss strategies, limitations, conditions and cautions for using these models and parameters in clinical treatment planning
TG-166 Charges:

• To review dose-response models introduced in TPS
• To discuss strategies, limitations, conditions and cautions for using these models and parameters in clinical treatment planning
• To point out dosimetric differences between outcome-model based and dose-volume based plan optimization and evaluation
TG-166 Charges:

- To review dose-response models introduced in TPS
- To discuss strategies, limitations, conditions and cautions for using these models and parameters in clinical treatment planning
- To point out dosimetric differences between outcome-model based and dose-volume based plan optimization and evaluation
- To provide general guidelines and methodology for commissioning and routine QA of outcome-model based TPS
Outcome modeling for treatment planning

- Survival probability (LQ)
- Equivalent Uniform Dose (EUD/gEUD)
- TCP (Poisson model)
- NTCP (LKB, Serial, Parallel)
- Clinical Response Models (Maximum likelihood analysis)
Outcome modeling for treatment planning

- Survival probability (LQ)
- Equivalent Uniform Dose (EUD/gEUD)
- TCP (Poisson model)
- NTCP (LKB, Serial, Parallel)
- Clinical Response Models (Maximum likelihood analysis)

Problems:

- Largely phenomenological rather than predictive
- Unreliable model parameters, needs more clinical data (e.g., QUANTEC)
Outcome modeling for treatment planning

- Survival probability (LQ)
- Equivalent Uniform Dose (EUD/gEUD)
- TCP (Poisson model)
- NTCP (LKB, Serial, Parallel)
- Clinical Response Models (Maximum likelihood analysis)

Problems:

- Largely phenomenological rather than predictive
- Unreliable model parameters, needs more clinical data (e.g., QUANTEC)

But still useful (pushing individual DVHs towards less toxicity)!
LQ parameters:

Malignant gliomas

MG
\[\alpha = 0.06 \pm 0.05 \text{ Gy}^{-1}\]
\[\alpha/\beta = 10.0 \pm 15.1 \text{ Gy}\]

Grade 1&2
\[\alpha = 0.35 \pm 0.07 \text{ Gy}^{-1}\]
\[\alpha/\beta = 4.3 \pm 5 \text{ Gy}\]

Grade 3
\[\alpha = 0.11 \pm 0.10 \text{ Gy}^{-1}\]
\[\alpha/\beta = 5.8 \pm 11.8 \text{ Gy}\]

Grade 4
\[\alpha = 0.04 \pm 0.06 \text{ Gy}^{-1}\]
\[\alpha/\beta = 5.6 \pm 9.4 \text{ Gy}\]

Qi, Schultz, Li, IJROBP, 2006.
Dose-volume limits for >= grade 2 rectal toxicity with LQ corrected doses (\(\alpha/\beta = 3\) Gy)

- Wachter (66 Gy: 14%)
- Koper (66 Gy: 33%)
- Cozzarini (66.2-70.2 Gy: 11%)
- Jackson (75.6 Gy: 19%)
- Fiorino (70-76 Gy: 9%)
- Akimoto (69 Gy: 25% 3 Gy/frac)
- Jackson (70.2 Gy: 6%)
- Hartford (75.6 Gy: 34% Grade 1)
- Huang (74-78 Gy: 23%)

LQ equivalent dose in 2 Gy fractions (Gy)

% volume
estimates of LKB volume effect parameter n for rectal complications

(Slide courtesy A. Jackson et al.)

(Note: $a = 1/n$)
Use of outcome models in computerized treatment planning

- Plan evaluation
- Plan optimization
Plan Ranking: Tomo vs IMRT
Case example: Female Anus

Figure-of-merit

TOMO: $f_{EUD} = 0.613$
IMRT: $f_{EUD} = 0.600$
Plan Optimization

Cost Functions: Mathematical forms of treatment goals

• Physical (dose-volume based) cost functions
 • Overdose/underdose volume constrains
 • Maximum/minimum doses

• Biological (outcome-model based) cost function.
 • Target/OAR EUDs
 • TCP/NTCP.
H&N case: Physical (XiO) vs Biological (Monaco)
Biological (solid) vs. dose-based (dashed) cost functions for OARs

Monaco
Sensitivity on model parameters: Monaco

PTV 70 cell sensitivity:
- 0.25 Gy⁻¹
- 1.0 Gy⁻¹
- 0.1 Gy⁻¹

Spinal cord PRV:
- Power law exponent:
 - 12
 - 20
 - 1

Spinal cord PRV equivalent uniform dose:
- 25 Gy
- 15 Gy
- 30 Gy

Left parotid:
- Power law exponent:
 - 3.9
 - 1.0

Left parotid reference dose:
- 26 Gy
- 15 Gy
- 35 Gy

Left parotid mean organ damage:
- 35%
- 20%
- 50%

Graphs showing volume (%) against dose (Gy) for different parameters and conditions.
Comparison: Monaco (solid), Pinnacle (dashed), Eclipse (dotted)
Why does outcome model work?
Why does outcome model work?

We know how to ask and what to ask!
Why does outcome model work?

We know how to ask and what to ask!

- Since, by definition, there are an infinite number of DVHs that leads to an EUD for a given organ, outcome-model based cost functions can lead to the desired EUD directly.
Why does outcome model work?

We know how to ask and what to ask!

- Since, by definition, there are an infinite number of DVHs that leads to an EUD for a given organ, outcome-model based cost functions can lead to the desired EUD directly.
- Can get the best possible result (not just any acceptable result) and will get it more quickly and easily.
Serial structure (spinal cord, rectum)

Parallel structure

lung, liver
How does a serial complication model control the DVH?

The length of the weight arrow grows as

\[D^{k-1} \exp(\alpha D) \]

or similar functions.
In contrast, a quadratic penalty:

DVH control only for doses greater than threshold

Courtesy M. Alber

Bloemfontein 2006
How does a parallel complication model control the DVH?

The length of the weight arrow grows as

\[\frac{\exp(-\alpha D)}{(1 + \exp(-\alpha D))^2} \]

or similar functions.
In contrast, a DVH constraint:

The constraint controls only a single point.

Courtesy M. Alber

Bloemfontein 2006
Cautions for using outcome-model based TPS

- Cold and hot spots
- Sensitivity of model parameters
- Extrapolation/interpolation between fractionations (EUD, DVH)
TG-166 General Recommendations

- Outcome-model based cost functions for OARs are *more effective* towards OAR sparing
TG-166 General Recommendations

• Outcome-model based cost functions for OARs are more effective towards OAR sparing

• Outcome-model based TPS could generate highly non-uniform dose distributions. Unless for deliberate and tested situations, such highly non-uniformity should be avoided by using min and/or max dose constraints.
TG-166 General Recommendations

- Outcome-model based cost functions for OARs are *more effective* towards OAR sparing.

- Outcome-model based TPS could generate highly non-uniform dose distributions. Unless for deliberate and tested situations, such highly non-uniformity should be avoided by using min and/or max dose constraints.

- At present, plan evaluation should base on established dose-volume criteria (3D dose distribution, DVH). Biological indices may be used to help select rival plans. Use of absolute estimates of TCP/NTCP as main indicators of plan quality is not warranted at this time.
Commissioning of biologically based TPS

- **Verification of model calculations (EUD/TCP/NTCP)**
Commissioning of biologically based TPS

• **Verification of model calculations (EUD/TCP/NTCP)**
 – Benchmark phantom (suggested by TG-166)
Benchmark Phantom for verification of EUD, TCP and NTCP calculation
TCP/NTCP calculated for benchmark phantom

<table>
<thead>
<tr>
<th>Structure</th>
<th>PTV Rectangle</th>
<th>Rectangle 1</th>
<th>PTV Rectangle</th>
<th>Rectangle 1</th>
<th>Rectangle 2</th>
<th>Triangle 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D50 (Gy)</td>
<td>63.3</td>
<td>44.2</td>
<td>80</td>
<td>75.1</td>
<td>55.3</td>
<td>46</td>
</tr>
<tr>
<td>γ</td>
<td>5</td>
<td>1.6</td>
<td>3</td>
<td>2.8</td>
<td>3.1</td>
<td>1.8</td>
</tr>
<tr>
<td>α/β (Gy)</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Seriality</td>
<td>N/A</td>
<td>N/A</td>
<td>0.18</td>
<td>8.4</td>
<td>0.69</td>
<td>1</td>
</tr>
<tr>
<td>Function</td>
<td>TCP</td>
<td>TCP</td>
<td>NTCP</td>
<td>NTCP</td>
<td>NTCP</td>
<td>NTCP</td>
</tr>
<tr>
<td>Value (%)</td>
<td>94.1</td>
<td>80.3</td>
<td>26.6</td>
<td>18.1</td>
<td>23.5</td>
<td>29.5</td>
</tr>
</tbody>
</table>
Commissioning of biologically based TPS

- **Verification of model calculations (EUD/TCP/NTCP)**
 - Benchmark phantom (suggested by TG-166)
 - Test cases (head & neck, prostate and brain cases available from TG-166 site)
Commissioning of biologically based TPS

- **Verification of model calculations (EUD/TCP/NTCP)**
 - Benchmark phantom (suggested by TG-166)
 - Test cases (head & neck, prostate and brain cases available from TG-166 site)
 - Independent software tools (e.g., CERR [http://radium.wustl.edu/CERR/about.php], BioPlan (Sanchez-Nieto and Nahum), BioSuite (Uzan and Nahum).
Commissioning of biologically based TPS

- **Verification of model calculations (EUD/TCP/NTCP)**
 - Benchmark phantom (suggested by TG-166)
 - Test cases (head & neck, prostate and brain cases available from TG-166 site)
 - Independent software tools (e.g., CERR (http://radium.wustl.edu/CERR/about.php), BioPlan (Sanchez-Nieto and Nahum), BioSuite (Uzan and Nahum)).

- **Double planning for first several cases from each representative tumor site using the outcome-model based TPS and the standard dose-based TPS**
Routine QA for outcome-model based TPS

- Establish a sample plan with baseline data (e.g., DVH, EUD, TCP, NTCP) at commissioning
Routine QA for outcome-model based TPS

- Establish a sample plan with baseline data (e.g., DVH, EUD, TCP, NTCP) at commissioning

- Replan the sample case annually or after a major upgrade and compare to the baseline data, to ensure that models, parameters, and algorithms implemented in the TPS remain the same
Summary:

Outcome-model based treatment planning

• is more effective to optimize plan towards normal tissue sparing.
Summary:

Outcome-model based treatment planning

- is more effective to optimize plan towards normal tissue sparing.
- needs to be implemented with cautions.
Summary:

Outcome-model based treatment planning

• is more effective to optimize plan towards normal tissue sparing

• needs to be implemented with cautions

• requires more data/work for outcome modelling
Summary:

Outcome-model based treatment planning

• is more effective to optimize plan towards normal tissue sparing.
• needs to be implemented with cautions.
• requires more data/work for outcome modelling.

• is coming into clinic and is here to stay!
Acknowledgement

Members of TG-166

(Vladimir Semenenko, Chuck Mayo....)

- An Tai, Ph.D
- Jian Wang, Ph.D
- Mariana Guerrero, Ph.D
- Rob Stewart, Ph.D
- Sharon Qi, Ph.D
- J. Frank Wilson, MD
- Chris Schultz, MD
- Beth Erickson, MD

Funding support: NIH, MCW