QA for Helical Tomotherapy: Report of the AAPM Task Group 148

Members:

Katja Langen (Co-chair) Niko Papanikolaou (Co-chair) Walter Grant Richard Crilly Murty Goddu Chengyu Shi David Followill Chester Ramsey John Balog Gustavo Oliv<u>era</u>

Conflict of Interest:

Dr. John Balog owns TomoTherapy stock.

Dr. Gustavo Olivera is an employee of TomoTherapy Inc. and has a financial interest in TomoTherapy, Inc.

Introduction

- TG-148 provides QA guidelines specific for helical tomotherapy.
- Adapt guidelines from current TG reports where appropriate (e.g. output constancy test).
- Generate technology specific guidelines for QA aspects that are not covered elsewhere (e.g. specific mechanical alignment tests).

TG-148 overview

- Introductory chapters. Define TomoTherapy specific terminology. Cover unique aspects of technology and clinical implementation.
- Provide QA guidelines for treatment delivery, imaging, and treatment planning system.
 Recommendations on what to test.
 Provide examples of how to test.
- Provide summary of QA aspects according to frequency.

System Overview

Treatment Delivery QA

- QA of mechanical alignments
- QA of beam parameters
- Synchronicity tests
- Miscellaneous Aspects
- Calibration

Treatment Delivery QA

- QA of mechanical alignments
- QA of beam parameters
- Synchronicity tests
- Miscellaneous Aspects
- Calibration

Treatment Delivery QA

- Alignment of Linac

in y-direction against y-jaw

sweep y-jaw in y-direction, measure output

Mechanical alignment QA

For treatment - 3 commissioned field sizes in y-direction: 1, 2.5, and 5 cm

Treatment field centering: test that all fields have common center

Mechanical alignment QA

MLC centering and twist: test that MLC is centered and parallel to plane of rotation

Gantry @ 0 ° Irradiate film positioned at iso

/

Film

√so

Swing gantry to 180 ° Close central leafs

Mechanical alignment QA

MLC centering and twist: test that MLC is centered and parallel to plane of rotation

Two outer areas should be parallel- no twist

Central area should be centered between outer areas-no offset

Treatment Delivery QA

- QA of mechanical alignments
- QA of beam parameters
- Synchronicity tests
- Miscellaneous Aspects
- Calibration

Beam parameter QA

Treatment Delivery QA

- QA of mechanical alignments
- QA of beam parameters
- Synchronicity tests
- Miscellaneous Aspects
- Calibration

Synchronicity (quarterly)

Gantry angle: Consistency and accuracy during tx

Couch speed: Uniformity

Couch translation per gantry rotation: Synchronicity

Example tests are detailed in Fenwick et al. (PMB, 49, 2933-2953)

Treatment Delivery QA

- QA of mechanical alignments
- QA of beam parameters
- Synchronicity tests
- Miscellaneous Aspects
- Calibration

Miscellaneous (monthly)

Interrupted procedure = Uninterrupted procedure (tolerance 3% in delivered dose)

Couch travel: actual distance = digital readout (tolerance 1 mm)

Misc. couch aspects (level, sag, travel perpendicular to treatment plane)

Miscellaneous

Lasers:

Daily: Red=Green at initialization

Monthly: Red laser movement=planned movement

<u>Annual (green):</u> Virtual iso to treatment plane = 70 cm x and z location cross in center of imaging plane

Calibration

TG-51 equivalent static beam calibration:

- Problem: k_{Q} values in TG-51 are a function of PDD @ 100 cm SSD for 10 by 10 cm field
- >> not achievable on Tomo (85 cm SSD, max field length 5 cm)
- >> IAEA/AAPM joint committee proposed noncompliant beam calibration formalism

(Alfonso et al., Med Phys, 35, 5179-86, 2008)

Calibration

Allow two calibration routes:

Machine-specific reference field: msr (static delivery)

Plan class specific reference field: pcsr (rotational delivery)

(Alfonso et al., Med Phys, 35, 5179-86, 2008)

Calibration-machine
specific reference field
(msr)
Tomo-msr: 5 cm by 10 cm @85 cm SSD
$$D_{w,Q_{msr}}^{f_{msr}} = M_{Q_{msr}}^{f_{msr}} \cdot N_{D,w,Q_0} \cdot k_{Q,Q_0} \cdot k_{Q_{msr,Q}}^{f_{msr,fref}}$$

Calibration-machine
specific reference field
(msr)
Tomo-msr: 5 cm by 10 cm @85 cm SSD
$$D_{w,Q_{msr}}^{f_{msr}} = M_{Q_{msr}}^{f_{msr}} \bullet N_{D,w,Q_0} \bullet k_{Q,Q_0} \bullet k_{Q_{msr,Q}}^{f_{msr,fref}}$$
Corrected reading in msr-field

Calibration

Of the two calibration routes, the calibration via pcsr-field (rotational delivery) is the relevant route for tomotherapy.

(Alfonso et al., Med Phys, 35, 5179-86, 2008)

Imaging QA

- Spatial/Geometry Tests
- Image Quality Tests
- MVCT Dosimetry

Spatial/Geometry Tests

- MVCT Image <u>Reconstruction</u> Accuracy (Annual)

Image known object, check dimension, orientation, and location

Tolerance: within 1 MVCT pixel

Spatial/Geometry Tests

 Image <u>Registration</u> tests (Annual)
Use phantom with high contrast object: position with respect to external lasers or

use known offset

Tolerance: within 1 MV/kV pixel (larger pixel is limiting)

Daily imaging Test

-Test imaging, registration, alignment chain

3) Align	
-test	
automatic	
couch setup	

Tolerance: Consistency within 2 mm

can 2)Register | -compare to known offsets

Phantom-based end-to-end test

- Dosimetric end-to-end test of registration accuracy (Annual)
- Phantom based end-to-end test, image, register, treat
- Analyze spatial accuracy of dose distribution in phantom using film dosimetry

Accounts for registration, dose calculation, and delivery accuracy

Image Quality (monthly)

- Noise
- Uniformity
- Spatial resolution
- CT-number
- MVCT Dose

Noise

Standard deviation of HU in uniform phantom

Typical noise level: 50-70 HU central region 25-35 HU in peripheral region

Uniformity

In uniform phantom, central and peripheral ROI:

Tolerance: less than 25 HU difference

Spatial resolution

Resolution of high contrast object:

Tolerance: 1.6 mm object should be resolved

CT number

Important if MVCT is used for dose calculations

Monitor HU for water, lung, bone equivalent material

Tolerance: less than 30 HU for water less than 50 HU for lung/bone

MVCT dosimetry

Multiple slice average dose (MSAD) measurement:

Scan phantom with IC inserted

In cheese phantom: 1-3 cGy for "Normal" scan On monthly basis: less than 30 % variation

Monthly MVCT QA

Test Consistency

HU Noise Uniformity Spatial resolution Dose

 can be done with 1 MVCT scan

Treatment Planning QA

Geometric validation tests

Dosimetric validation test

TPS- Geometric test (annual)

Test CT data import- dimensions, orientation, text

Test integrity of imported <u>structure set</u>-volume and dimension

TPS- Dosimetric tests (annual)

Generate phantom-based plans test with IC measurements

Generate plans for on- and off-axis targets Generate plans for each commissioned field size

Tolerance: 3%/3 mm

TPS- Patient Plan QA (DQA)Recalculate plan in phantom geometry:Expectation: 90% of measurements pass 3%/3mm
testExample:
"Cheese" phantom,
IC and FilmIC and FilmIC and FilmIC and Film

Frequency: Daily, monthly, quarterly, annual

Evom	nla:
Exam	pie.

DAILY	Purpose	Tolerance	Report	
Test		Limit	Section	
Output Rotational or Static	Consistency	3%	V.B.2.d.	
MVCT artifact	Consistency with ATP	pass/fail	VI.B.1.c.	
Image registration	Consistency	2 mm	VI.B.1.c.	
Laser and couch movement post registration	Consistency	1 mm	VI.B.1.c.	
Red laser initalization	red=green laser	1 mm	V.B.4.b.	

System Maintenance

Provide guidance of what to test after work on:

Magnetron/SSM Linac/Target Y-Jaw MCL

