Dual Energy Imaging with Dual Source CT Systems

Rainer Raupach, PhD
Siemens Healthcare
rainer.raupach@siemens.com

Dual Energy Radiography

Radiograph Bone image Tissue image

2 energies \rightarrow 2 materials

kV Switching with SOMATOM DRH – in the 80s

- Calculation of material selective images:
 - Calcium and soft tissue

\[\text{Mean Energy} \]

\[
\begin{align*}
\text{Tube 1} & : 56 \text{ kV} \\
\text{Tube 2} & : 76 \text{ kV}
\end{align*}
\]

Data acquisition with different X-ray spectra: 80 kV / 140 kV

Principle of Dual Energy CT

- Different mean energies of the X-ray quanta
Principle of Dual Energy CT

- Many materials show different attenuation at different mean energies

![Graph showing attenuation at different mean energies](image)

- Reason: different attenuation mechanisms (Compton vs photo effect)

SOMATOM Definition

The World’s First Dual Source CT

- Faster than Every Beating Heart
 - gated mode / same kV
 - high temporal resolution (80ms)
 - Cardiac imaging

- One-Stop Diagnosis in Acute Care
 - non-gated mode / same kV
 - low temporal resolution
 - Obese patients, low kV scanning

- Beyond Visualization with Dual Energy
 - different kV (gated and non-gated)

Spectra of Dual Energy Applications

- Basic application: Enhanced viewing, contrast optimization
- Contrast enhanced studies: Iodine has much higher contrast at 80 kV
- Non-linear, attenuation-dependent blending of the images combines benefits of 80 kV (high contrast) and mixed data (low noise)

“Contrast Enhanced Viewing” using Dual Energy

Information in Addition to Simple Image Mixing
syngo Dual Energy

Direct subtraction of bone

- Modified 2-material decomposition: Separation of two materials
 - Assume mixture of blood + iodine (unknown density)
 - and bone marrow + bone (unknown density)

syngo Dual Energy

Direct subtraction of bone

- Modified 2-material decomposition: Separation of bone and iodine
- Automatic bone removal without user interaction
 - Clinical benefits in complicated anatomical situations:
 - Base of the skull
 - Carotid arteries
 - Vertebral arteries
 - Peripheral runoffs

Image Based Methods

- Modified 2-material decomposition: Characterization of kidney stones
 - Urine + calcified stones / uric acid stones
SOMATOM Definition
- World’s first DSCT
- Spatial Res: 0.33 mm
- Rotation: 0.5 sec
- Scan time: 4 s
- Scan length: 133 mm
- $140/80$ kV
- $E_{eff} 80/150$
- Spiral Dual Energy

Applications of Dual Energy CT
- Three material decomposition: quantification of iodine – iodine image
- Removal of iodine from the image: virtual non-contrast image
Image Based Methods

- Most promising application: 3-material decomposition
 - Calculation of a virtual non-contrast image, iodine quantification

Applications of Dual Energy CT

- Virtual non-contrast image and iodine image:
 - Characterization of liver / kidney / lung tumors
 - Solve ambiguity: low fat content or iodine-uptake
 - Quantify iodine-uptake in the tumor and at the tumor surface
 - Differentiation benign - malignant
 - Monitoring of therapy response

Applications of Dual Energy CT

- Quantification of iodine to visualize perfusion defects in the lung
 - Avoids registration problems of non-dual energy subtraction methods

SOMATOM Definition Flash
Latest Generation of Dual Energy CT

System Design

- Two X-ray tubes at 95°, each with 100 kW
- Two 128-slice detectors, each with 64x0.6mm collimation and z-flying focal spot
- SFOV A/B-detector: 50/33 cm
- 0.28 s gantry rotation time
 75 ms temporal resolution
SOMATOM Definition Flash
Single dose Dual Energy

D OSE - neutral DE: comparison of 120 kV and 100 kV/140 kV+0.4 mm Sn

Images acquired and processed in collaboration with CIC Mayo Clinic Rochester, USA
New Application Classes

- Measurement of Lung Nodule enhancement
- Measurement of Xenon Concentration
- Mono-energetic imaging

Dual Energy CT

- Are there alternative approaches?
 - Sequential acquisition at 80 kV and 140 kV with single source CT
 - Registration problems (heart/lung motion, varying contrast density)
 - Fast kVp-switching during the scan with single source CT
 - Inadequate power at low kV
 - Unequal noise for low and high kV data
 - Spectral sensitive „sandwich“ detectors
 - Inferior spectral separation
 - Quantum counting
 - Paralysis at high flux rate
 - Spectral overlap by fluorescence and pile-up

Dual Energy CT Performance

- Dose
- Phantom diameter [cm]
- Relative DE MC²

Thank you!