3D ULTRASOUND-GUIDED PROSTATE INTERVENTIONS

Disclosure

Mechanical 3D US guided prostate biopsy technology has been licensed to Eigen Inc (California, USA)

Prostate Cancer Statistics

- Prostate cancer is the most common non-skin cancer in men accounting for up to 9% of all cancer deaths.
- If diagnosed at an early stage, the disease is curable.

Prostate Cancer Diagnosis

Diagnostic Tests

- Digital rectal exam (DRE)
- Prostate Specific Antigen (PSA)
- Gold Standard → Needle biopsy using 2D transrectal US guidance
Challenges

Detection of Prostate Cancer

- Early stage prostate cancer not visible in ultrasound.

- Physicians target regions with high probability of harboring the disease.

- Transrectal ultrasound biopsy leads to a false negative as high as 34%.

Repeat Biopsy

Some cases requiring repeat biopsy:

- Suspicious PSA or DRE, despite –ve biopsy
 - Must biopsy new locations

- Atypical, small acinar proliferation (ASAP)
 - Inconclusive traces of atypical cells in histology
 - Must biopsy exact location of previous biopsy

Prostate Cancer Diagnosis

Biopsy Limitations

- Confined to 2D

- Few anatomical reference points to guide needle

- Pathology rarely visible → High rebiopsy rate

- Cannot easily use other modalities for Bx guidance

Challenges

Where to re-biopsy?
Emerging Imaging Tools

- MR DCE
- MR Spectroscopy
- MR Diffusion
- PET

Potential Benefit:
- Identify and target Bx to suspicious zones

GOAL: 3D US Guided Biopsy

- Combine 3D ultrasound imaging with real-time guidance to form a 3D prostate biopsy system, capable of:
 - Prostate biopsy planning,
 - Recording of biopsy locations in 3D,
 - Targeting lesions identified from other modalities.

Mechanical Guidance System

- Tracking mechanism
- Ultrasound Probe

Rotational Mover (End Fire)
Rotational 3D Scanning

- 3D Motorized or manual Scan
- Digitize 2D Images
- 3-D Reconstruction
- 3-D Volume Image

3D ULTRASOUND: Approach

- Rotate US probe ~180 deg (manual or motor) in about 6 sec
- Digitize 2D images as probe rotates
- Reconstruct 3D image in real-time
- 3D prostate image available immediately

3D Prostate Ultrasound

3D Prostate Segmentation
Prostate Segmenting in 3D

QuickTime™ and a Microsoft Video 1 decompressor are needed to see this picture.

3D Prostate Model + Biopsy Navigation

Biopsy Procedure
Record of Core Locations

In Vitro Targeting Accuracy

Experimental Setup
- Biopsy multimodal CT/US prostate phantom.
- Simulated prostate embedded within agar.
- Selected biopsy targets and perform biopsy.
- Use of high resolution CT to determine location of biopsy cores.

RESULTS: Biopsy of test phantom

Needle-guidance Error: Biopsy: 2.1 ± 1.3 mm

RESULTS: Biopsy of test phantom

Navigation Error: n=30

<table>
<thead>
<tr>
<th></th>
<th>Targeting (mm)</th>
<th>Recording (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Tracking</td>
<td>2.1 ± 1.3</td>
<td>1.5 ± 0.9</td>
</tr>
</tbody>
</table>
NON-RIGID 3D REGISTRATION OF 3D US to 3D MR IMAGES

3D MR - US non-rigid registration

QuickTime™ and a Microsoft Video 1 decompressor are needed to see this picture.

3D MR - US Guided Biopsy

Pre-Biopsy MRI

Axial View

Coronal View
SUMMARY

We have developed a 3D ultrasound navigation system to allow:
• Recording of core locations in 3D
• Guide biopsy to desired location
 – To previous biopsy location
 – To location identified with MRI
• Clinical trials in progress

Thank You

Graduate Students & Post-docs
Jeff Bax, Vaishali Karnik, Aaron Ward
Derek Cool, Manale Saikaly, Adam Waspe

Software & Electrical Design
Shi Sherebrin, Lori Gardi
Igor Gyauskov, Chandima Edrisingehe

Design & Manufacturing
Chris Blake, David Smith, Kerry
Knight, Jacques Montreuil, Kevin
Rucker, Mike Scott

Research Collaborators
Donal Downey, Cesare
Romagnoli, Glenn Bauman,
Jonathan Izawa, Joseph Chin,
Masoom Haider, John
Trachtenberg, Hanif Ladak,
Abbas Samani, Mingyue Ding,
Robert Bartha, Charles McKenzie,
3D MR - US non-rigid registration