The Challenges of CT Accreditation: Introduction

Thomas G. Ruckdeschel, MS, DABR
Diagnostic Radiological Physicist
Medical Nuclear Physicist
Alliance Medical Physics LLC

Outline

- Acknowledgements
- Resources
- Common Reasons for Failure
- ACR Accreditation: Table I
- GE Scanners
- Siemens Scanners
- Philips Scanners
- Toshiba Scanners
- Electronic Submission
- Panel Discussion

Disclaimer

- ACR CT Accreditation Physics Subcommittee
 - Charter member
 - Reviewer
- Alliance Medical Physics LLC
 - President
 - Medical Physics Consultant

Acknowledgements

- ACR CT Accreditation Physics Subcommittee
 - Dianna Cody, PhD Co-Chair
 - Doug Pfeiffer, MS Co-Chair
 - Cynthia McCollough, PhD
 - Former Chair
 - Michael McNitt-Gray, PhD
 - Thomas Payne, PhD
- ACR Staff
 - Theresa Branham
 - Dina Hernandez
 - Krista Bush
Acknowledgements

- GE Healthcare
- Siemens Healthcare
 - Christianne Leidecker, PhD
- Philips Healthcare, N.A.
- Toshiba America Medical Systems
 - Rich Mather, PhD
 - Kirsten L. Boedeker, PhD

Resources

- ACR
 - 1-800-227-5483
 - Staff available to answer questions
 - Technical questions passed onto Physics subcommittee
 - www.acr.org/accreditation
- Medical Physicist
- Vendor
 - Service engineer
 - Applications Support
 - Operators Manual
 - Tips for Accreditation
- ImPACT
 - ImPACTscan.org

ACR

- Phantom Testing Instructions
- Phantom Testing Criteria
 - Take home test with the answers!
- Medical Physics 31(9) September 2004
 - Practical Tips, Artifact Examples, Pitfalls to Avoid
- FAQ’s
 - Detector configurations (GE LS example)
 - Helical to axial conversion
 - Toshiba Dose
 - Toshiba FOV and CT numbers
Resource Personnel

- Qualified Medical Physicist
 - Qualifications submitted to ACR with Entry Application
 - Experience with various scanners
- Service Engineer
 - Familiar with scanner operations and capabilities
 - Should be available to correct deficiencies
 - Service Mode access
- Applications Support
 - Familiar with scanner operations and capabilities
Scanner's Operators Manual

- **Pro's**
 - Detector configurations
 - Available slice reconstructions
 - Parameters are defined

- **Con's**
 - Not always easily accessible
 - Soft copies
 - May be difficult to find what is needed

- **Tips for Accreditation**
 - Supplied by some vendors upon request

Common Reasons for Failure

- **Failure to follow instructions**
- **Phantom Alignment**
 - Major Failure
- **Improper scanning parameters used**
 - Table I protocols do not match Protocols used
 - Helical to Axial conversions
 - mA vs effective mA
 - Medical Physicist vs Technologist
- **Low Contrast Detectability**
 - Cannot visualize at least all four 6 mm rods
- **Dose**
 - Incorrect parameters used
 - Dose Calculator Excel Spreadsheet must be used

ACR Phantom Gammex 464

<table>
<thead>
<tr>
<th>Phantom</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR Phantom</td>
<td>Gammex 464</td>
</tr>
</tbody>
</table>

Table I: Protocol (No. of slices, slice thickness, & protocol)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Protocol 1</th>
<th>Protocol 2</th>
<th>Protocol 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of slices</td>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Slice thickness</td>
<td>1mm</td>
<td>2mm</td>
<td>3mm</td>
</tr>
<tr>
<td>Protocol</td>
<td>Helical</td>
<td>Axial</td>
<td>Helical</td>
</tr>
</tbody>
</table>

Tips for Accreditation

- Supplied by some vendors upon request

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dosage Calculator Excel Spreadsheet must be used
Phantom Alignment
Alignment tip: A/P and Lateral (Scouts)
Table I Parameters

- kVp
 - Must be tested if not disabled. Does not matter if they are used clinically or not.
 - For all scanners, a kVp may not be available for a given time and mA combination. Keep mAs the same and increase the rotation time or keep mA/mAs as close as possible to Table I.
 - Remember available kVp's are entered into page 1 of Site Scanning Data Sheet.

- mA
 - Typically mAs is displayed
 - mAs/time = mA
 - Effective mAs
 - Effective mAs = mAs/Pitch
 - mA modulation?
 - Determine average mA or mAs
 - Enter average value into Table I
mAs

- **GE**
 - mAs = mAs

- **Philips**
 - mAs/slice = effective mAs = mAs/Pitch
 - mAs = effective mAs / Pitch

- **Siemens**
 - Effective mAs = mAs/Pitch

- **Toshiba**
 - mAs = mAs
 - Toshiba 32 and 64
 - Eff mAs

Table I Parameters

- **Scan Field of View (SFOV)**
 - in cm or name
 - 25 cm, 50 cm, Large, Medium & Small Body, Head
 - Note: Head and Body use different Bowtie filters
 - Siemens 64 has 70 cm SFOV option
 - Toshiba has 18 cm, 24 cm, 32 cm, 40 cm & 50 cm
 - Must use appropriate SFOV for phantom, even though the protocol may be different

- **Display Field of View (DFOV)**
 - 5 cm – 50 cm (70cm)
 - Select appropriate for phantom
 - ACR recommends closest to, but not <21 cm for ACR phantom (20 cm phantom)
 - 24 cm – 25 cm DFOV prevents displayed text obstruction
 - CTDI body
 - 32 cm diameter
 - 35–40 cm DFOV
 - CTDI head
 - 16 cm diameter
 - 20 cm – 35 cm DFOV

- **Time per rotation(s) in sec**
 - Partial scans
 - <0.4 sec/rotation
 - 270° rotation
 - Affects CTDI measurements
 - Overscans
 - 420° rotation
 - Affects CTDI measurements
 - Use Time per 360° rotation for dose measurements

- **Note**: Head and Body use different Bowtie filters

- **Siemens 64 has 70 cm SFOV option**

- **Toshiba has 18 cm, 24 cm, 32 cm, 40 cm & 50 cm**
 - Must use appropriate SFOV for phantom, even though the protocol may be different

- **ACR recommends closest to, but not <21 cm for ACR phantom (20 cm phantom)**

- **Display Field of View (DFOV)**
 - 5 cm – 50 cm (70cm)
 - Select appropriate for phantom
 - ACR recommends closest to, but not <21 cm for ACR phantom (20 cm phantom)
 - 24 cm – 25 cm DFOV prevents displayed text obstruction
 - CTDI body
 - 32 cm diameter
 - 35–40 cm DFOV
 - CTDI head
 - 16 cm diameter
 - 20 cm – 35 cm DFOV
Table I Parameters

- **Reconstruction Algorithm**
 - Equipment manufacturer specific
 - High Resolution Chest algorithm is usually Lung, Detail or Bone (sharp or very sharp)
 - Must use for high resolution image at S120
- **Axial (A) or Helical (H)**
 - Indicate mode used for clinical protocol

Table I Parameters

- **Detector Configurations**
 - Z axis collimation (in mm)
 - Width of the tomographic section along the z axis imaged by one data channel
 - Note: In MDCT, several detector elements may be grouped together to form one data channel
 - # Data Channels (N) in a single axial scan
 - \(N \times T = \text{detector configuration} = \text{total effective x-ray beam width} \)

Detector Arrays

- **z = 20 mm, 16 vs 8 detectors**
Equal Width Array

- 16 detectors x 1.25 mm
- Recon 4i x 5.0 mm
- 4 detectors x 1.25 mm
- Recon 4i x 1.25 mm

Unequal Width Array

- 8 detectors recon 4i x 5.0 mm
- 6 detectors recon 4i x 2.5 mm
- 4 detectors recon 4i x 1.0 mm (Note: collimate outer 3rd of outer detectors)
- 2 detectors recon 2i x 0.5 mm (Note: collimate outer half of detectors)

Comparison of Early Detector Designs

<table>
<thead>
<tr>
<th>Vendor</th>
<th># of Detector elements</th>
<th>Type of Array</th>
<th>Detector Widths</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>16</td>
<td>Equal</td>
<td>16 x 1.25</td>
</tr>
<tr>
<td>Marconi</td>
<td>8</td>
<td>Unequal</td>
<td>2 x 1.0, 2 x 1.5, 2 x 2.5, 2 x 5.0</td>
</tr>
<tr>
<td>Siemens</td>
<td>8</td>
<td>Unequal</td>
<td>2 x 1.0, 2 x 1.5, 2 x 2.5, 2 x 5.0</td>
</tr>
<tr>
<td>Toshiba</td>
<td>34</td>
<td>Unequal</td>
<td>4 x 0.9, 40 x 1.8</td>
</tr>
</tbody>
</table>

Table I Parameters

- **Pitch (IEC)**
 - \(P = I / (N \times T) \)
 - \(I = \) Table Speed in mm/rotation
 - \(N = \) # data channels
 - \(T = \) detector width in z axis
 - \(N \times T = \) collimated x-ray beam width

10
Example of Pitch

- $I = 15 \text{ mm/rotation}$
- $N = 4$ data channels
- $T = 2.5 \text{ mm detector width}$
- $P = \frac{(15.0 \text{ mm/rotation})}{(4 \times 2.5 \text{ mm})}$
- $P = 15.0/10.0 = 1.5$

Pitch

- Determines effective mAs
 - $= m\text{As/Pitch}$
- Determines CTDIvol
 - $= \text{CTDIw/Pitch}$
- Used to also derive DLP and effective dose

Reconstruction Scan Width

- Image thickness of reconstruction images

Reconstruction Scan Interval

- Interval between reconstructed images

Dose Reduction Techniques

- mA modulation
 - Auto mA/Smart mA
 - CAREDOSE
 - Doseright
 - Real EC
 - $^\text{3D}$Exposure

Clinical use recorded in Table I

- Not used to obtain images
CT Dosimetry

- Must measure CTDI in Axial Mode
- Must use Technique in Table I for Adult Head, Adult Abdomen and Pediatric Abdomen (unless attested)
 - Use mAs vs effective mAs
- Adult Head in Head Holder
- Adult Abdomen and Pediatric Abdomen on Table
- Must fill all Phantom Holes
- Must use Dose Calculator Spreadsheet

CT Dosimetry

- Must use Clinical/Table I Techniques
- Must use Axial scan to measure CTDI
- When Clinical protocol is Helical
 - Convert to Axial
 - Use Axial scan with effective x-ray beam width closest to clinically used
 - Enter detector configuration used to obtain dose measurement
 - Adjust Table Speed to provide appropriate Pitch
- Use mAs not effective mAs
 - Effective mAs will yield CTDIvol instead of CTDIw

CT Dosimetry

- Must meet Dose Criteria
 - Pass/Fail
 - Adult Head: 80 mGy
 - Pediatric Abdomen: 25 mGy
 - Adult Abdomen: 30 mGy
 - Reference Values
 - Adult Head: 75 mGy
 - Pediatric Abdomen: 20 mGy
 - Adult Abdomen: 25 mGy

CT Dosimetry

- Compare CTDIvol with:
 - Displayed
 - Dose Calculator Programs
 - ImPACT
- Caveat:
 - Pediatric
 - Dependent on SFOV used
 - 16 cm vs 32 cm CTDI phantoms
Tips for success

- Follow instructions
- Know your scanner
 - Enlist technologist assistance
- Verify Scanner is calibrated and all previously identified deficiencies are corrected
- Use resources
 - Service engineer should be available
- Be your own reviewer!

The Challenges of CT Accreditation
GE CT Scanners

Thomas G. Ruckdeschel, MS, DABR
Diagnostic Radiological Physicist
Medical Nuclear Physicist
Alliance Medical Physics LLC

GE Lightspeed (4 Detectors)

ACR FAQ
Provided with accreditation material
GE Lightspeed 16

- Detector Configuration
 - 16 x 0.625 mm = 10.0 mm
 - 8 x 1.25 mm = 10.0 mm
 - Total effective length = 20.0 mm
 - Helical (# simultaneous slices/rotation time)
 - 2, 4, 8 & 16

- Simultaneous slices/rotation
 - 2 x 0.625 mm, 4 x 3.75 mm, 16 x 0.625 mm
 - 8 x 1.25 mm, 16 x 1.25 mm, 8 x 2.5 mm

GE Lightspeed 32

- Detector Configuration
 - 32 x 0.625 mm = 20.0 mm
 - 16 x 1.25 mm = 20.0 mm
 - Total effective length = 40.0 mm
 - Helical (# simultaneous slices/rotation time)
 - 8 & 32

- Simultaneous slices/rotation
 - 8 x 0.625 mm, 32 x 0.625 mm, 32 x 1.25 mm

GE Lightspeed 64 (VCT)

- LS VCT (64)
 - 64 x 0.625 mm = 40.0 mm
 - Helical (# simultaneous slices/rotation time)
 - 8, 32 & 64

- Simultaneous slices/rotation
 - 8 x 0.625 mm, 32 x 0.625 mm, 32 x 1.25 mm
 - 64 x 0.625 mm
GE VCT 64 CT

SMPTE Pattern

- Usually loaded and stored in Browser
- If not, Use Service Browser
 - Image Quality
 - Install SMPTE
Slice Thickness

- All requested slice thicknesses available
- GE VCT (64)
 - CT # vs Slice Thickness
 - > 5.0 mm slice thickness unavailable
Low Contrast

- Verify that low contrast criteria pass with Clinically used Technique
 - Must visualize all four 6.0 mm rods
 - If not, optimize technique, consult with site and adjust protocol
 - Table I

CT Dosimetry

- Convert Helical Technique to Axial Technique
 - 4 slice
 - Helical = 4 x 3.75 mm = 15 mm, I = 10 mm/rot
 - Pitch = 1.5
 - Axial = 4 x 3.75 mm = 15 mm, Table Feed = 0 mm
 - 64 slice
 - Helical = 64 x 0.625 mm = 40 mm, I = 55 mm/rot
 - Pitch = 1.375
 - Axial = 64 x 0.625 mm = 40 mm, Table Feed = 0 mm

The Challenges of CT Accreditation

Siemens Scanners
Siemens Sensation 10

- Detector Elements
 - 16 x 0.75 mm and 8 x 1.5 mm for a total “maximum” effective length of 24 mm @ isocenter

Siemens Sensation 10

- Nominal slice widths (Axial)
 - 0.6 mm, 0.75 mm, 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm, 4.5 mm, 5.0 mm, 6.0 mm, 9.0 mm & 10.0 mm

- Nominal slice widths and simultaneous slices (Axial)
 - 10 x 0.75 mm, 10 x 1.5 mm, 2 x 0.6 mm, 2 x 1.0 mm, 6 x 3.0 mm and 2 x 12.0 mm

Siemens Sensation 10

- Important Notes:
 - The 0.6 mm detector is available on Head Work & extremities
 - 0.75 mm and 1.5 mm are available in all modes.
 - 1.5 mm Helical can be reconstructed as 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm & 10.0 mm

Siemens Sensation 10

- Head (Axial):
 - 0.75 mm can be reconstructed as 0.75 mm, 1.5 mm, 3.0 mm & 6.0 mm
 - 1.5 mm can be reconstructed as 1.5 mm 3.0 mm & 6.0 mm
 - 0.6 mm can be reconstructed as 0.6 mm, 0.75, 1.0, 1.5
Siemens Sensation 10

Head (Helical):
- 10 x 0.75 mm can be reconstructed as 0.75 mm, 1.5 mm, 2.0 mm, 3.0 mm, 4.5 mm, 6.0 mm, 7.0 mm, 8.0 mm & 10.0 mm
- 10 x 1.5 mm can be reconstructed as 1.5 mm, 2.0 mm, 3.0 mm, 4.5 mm, 6.0 mm, 7.0 mm, 8.0 mm & 10.0 mm

Detailed Head Work:
- 0.6 mm 2 x 0.6 mm can be reconstructed as 0.6 mm
- 6 x 0.75 mm can be reconstructed as 0.75 mm, 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm & 6.0 mm
- 6 x 3.0 mm can be reconstructed as 3.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm & 10.0 mm

Siemens Sensation 10

Abdomen (Axial):
- 8 x 0.75 mm can be reconstructed as 0.75 mm, 1.5 mm, 3.0 mm & 6.0 mm
- 8 x 1.5 mm can be reconstructed as 1.5 mm, 3.0 mm & 6.0 mm
- 6 x 3.0 mm can be reconstructed as 3.0 mm, 6.0 mm & 9.0 mm
- 2 x 5.0 mm can be reconstructed as 5.0 mm & 10.0 mm

Siemens Sensation 10

Abdomen (Helical):
- 10 x 0.75 mm can be reconstructed as 0.75 mm, 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm & 6.0 mm
- 10 x 1.5 mm can be reconstructed as 0.75 mm, 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm & 6.0 mm
- 6 x 3.0 mm can be reconstructed as 3.0 mm & 6.0 mm
Siemens Sensation 10

- **Reconstructed slice widths available in Axial Mode:**
 - 0.6 mm, 0.75 mm, 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm, 4.5 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, 9.0 mm & 10.0 mm

Helical to Axial Slice Thickness

- **Sensation 10**
 - Abdomen Helical:
 - 10 x 1.5 mm
 - 5.0 mm slice recon
 - Abdomen Axial:
 - 8 x 1.5 mm
 - 3.5 mm or 6.0 mm slice recon
 - 2 x 5.0 mm
 - 5.0 mm

Siemens Sensation 16

<table>
<thead>
<tr>
<th>Mode</th>
<th>Maximum # Detectors/rot</th>
<th>Detector Configurations</th>
<th>Reconstructed image thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial</td>
<td>12</td>
<td>12 x 1.5 mm, 12 x 0.75 mm, 6 x 3.0 mm, 2 x 0.6 mm, 2 x 5.0 mm</td>
<td>4 x 4.5 mm, 3 x 3.0 mm, 2 x 3.0 mm, 1 x 1.25 mm, 3 x 5.0 mm</td>
</tr>
<tr>
<td>Helical</td>
<td>16</td>
<td>16 x 1.5 mm, 16 x 0.75 mm</td>
<td>5.0 mm, 4.0 mm</td>
</tr>
</tbody>
</table>

Siemens Sensation 64 Detector Configurations

- 64 x 0.6 mm, 20 x 0.6 mm, 12 x 0.6 mm
- 24 x 1.2 mm, 3 x 1.2 mm
- 6 x 3.0 mm, 3 x 6.0 mm, 2 x 9.0 mm
- 12 x 2.4 mm, 6 x 4.8 mm, 4 x 7.2 mm
- 3 x 9.6, 2 x 14.4 mm
- 1 x 5.0 mm, 1 x 10.0 mm
- 6 x 0.8 mm, 3 x 1.2 mm
- 2 x 1.8 mm, 1 x 3.6 mm

Note:
- Effective length of each element @ isocenter
 - 32 x 0.6 mm = 19.2 mm
 - 32 x 1.2 mm = 38.4 mm
 - 32 x 1.5 mm = 57.6 mm
 - 8 x 1.2 mm = 9.6 mm
 - Total effective length = 28.8 mm
Siemens Sensation 64 CT

- Dose Measurements
 - Technique may use 64 detector elements
 - Axial Techniques permit 32 detector elements only
 - Important Note: “Flying focal spot” uses 32 detector elements

-- The ACR instructions state that the CT dosimetry spreadsheet should use the techniques provided in Table I which should also be the techniques that are used clinically. If the technique is 120 kVp, 276 effective mAs, 0.5 seconds per rotation, N = 64 and T = 0.6 mm, Pitch = 0.75 then the Table I should be completed as follows:

```
<table>
<thead>
<tr>
<th>kVp</th>
<th>mA</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>414</td>
<td></td>
</tr>
</tbody>
</table>
```

- If effective mAs = 276 mAs, Pitch = 0.75, and mA = mAs x Pitch then,
 mAs = 276 x 0.75 = 207 mAs
- If As = mA x time in sec then,
 mA = As / time
 mA = 207 mAs / 0.5 sec = 414 mA
- Time per rotation: 0.5 sec

Siemens Sensation 64

- kVp: 120
- mA: 414
 - If effective mAs = 276 mAs, Pitch = 0.75, and mA = mAs x Time then,
 mAs = 276 x 0.75 = 207 mAs
 - If mAs = mA x time in sec then,
 mA = mAs / time
 mA = 207 mAs / 0.5 sec = 414 mA
- Time per rotation: 0.5 sec
Siemens Sensation 64

- Scanner Technique
 - T = 0.6 mm and N = 64
 - Flying Focal Spot
 - Pitch: 0.75
- What is the Table Speed?:
 - Pitch = Table Speed x N x T
 - Table Speed = 0.75 x 32 x 0.6 = 14.4 mm/rot

* The table speed is not displayed but is determined from the IEC definition of Pitch, P = Table speed (mm/rot) x N x T

Service Engineer

- Service Mode
 - Permits all technique combinations for all modes
 - (Rotate) Rot Mode
 - Imaging
 - (Stationary) Stat Mode
 - Generator tests
 - kVp
 - HVL

Service Mode

- Problems
 - Need service engineer
 - Difficulty filming from service mode
- QC or Physics Mode?
Anticipated Options for ACR Accreditation

- Potential Change of phantom alignment criteria from Major to Minor deficiency?
- Allow Helical scan with appropriate SFOV for CT accuracy
 - Acrylic (+110 to +135)
- Use Adult Head protocol for CT water and slice thickness
- When Abdomen Protocol kVp is 140 kVp, use 120 kVp for CT accuracy
- Remove conversion of helical protocol to axial except for Dose
- Add to instructions method to determine mAs for mA modulated techniques

Anticipated Options for ACR Accreditation

- New definitions and calculations to instructions:
 - Add mAs & effective mAs to Table I
 - Instructions to include N & T on e submissions
 - \(T = \frac{\text{the width of the tomographic section along the } x \text{-axis}}{\text{imaged by one data channel}} \)
 - In multi detector-row CT, several detector elements may be grouped together to form one data channel. In single detector-row CT, the value of \(T \) is equal to the nominal scan width.
 - \(N = \frac{\text{the number of tomographic sections imaged in a single axial scan}}{\text{(one rotation of the x-ray source)}} \)
 - This is equal to the number of data channels used in a particular scan. The value of \(N \) may be less than or equal to the maximum number of data channels available on the system.

Thank you!