PATIENT RADIATION DOSES IN DIAGNOSTIC RADIOLOGY

EDWARD L. NICKOLOFF, D.Sc.
ZHENG FENG LU, Ph.D.
DEPARTMENT OF RADIOLOGY
COLUMBIA UNIVERSITY &
NEW YORK-PRESBYTERIAN HOSPITAL
NEW YORK, NY

ORGANIZATION OF THE PRESENTATIONS

• PART 1: INTRODUCTION & REVIEW
 – REVIEW OF DIFFERENT UNITS OF RADIATION MEASUREMENTS
 – FACTORS THAT INFLUENCE PATIENT RADIATION DOSE
 – PRACTICAL METHODS FOR ESTIMATING PATIENT RADIATION DOSES
 – WITH REFERENCES
ORGANIZATION OF THE PRESENTATIONS

• PART 2: TYPICAL RADIATION DOSE VALUES, RISKS & DEALING WITH PUBLIC
 – N.E.X.T. SURVEYS
 – REFERENCE VALUES
 – FETAL DOSE CALCULATION GUIDES
 – REVIEW OF SOME BIOLOGICAL RISKS
 – DEALING WITH THE PUBLIC
- WITH REFERENCES

PATIENT RADIATION DOSES IN DIAGNOSTIC RADIOLOGY… part 1

ZHENG FENG LU, Ph.D.
DEPARTMENT OF RADIOLOGY
COLUMBIA UNIVERSITY &
NEW YORK-PRESBYTERIAN HOSPITAL
NEW YORK, NY
Radiation Quantity and Unit

- **EXPOSURE (X):**
 Amount of ion pairs created in air by x-ray or gamma radiation. Unit is Roentgen.
- $1 \text{ R} = 2.58 \times 10^{-4} \text{(C/kg)}$
Radiation Quantity and Unit

- **ABSORBED DOSE (D):** Energy absorbed from ionizing radiation per unit mass.
- SI Unit is J/kg or Gray (Gy).
- Conventional unit is rad.

 \[1 \text{ Gy} = 100 \text{ rad} \text{ or } 1 \text{ rad} = 10 \text{ mGy} \]
- Soft tissue f-factor: 0.93 for diagnostic.

Radiation Quantity and Unit

- **Equivalent Dose (H):** Converts absorbed dose to equivalent tissue damage for different types of radiation.
- ICRP 92: radiation-weighted dose
- For X-ray, the weighting factor \(W_R \) is 1.
- SI unit is Sievert (Sv).
- Conventional unit is rem.

 \[1 \text{ Sv} = 100 \text{ rem} \text{ or } 1 \text{ rem} = 10 \text{ mSv} \]
Radiation Quantity and Unit

- **Effective Dose (E):**
 - Concerns different tissue radiosensitivity
 - Tissue weighting factors were established
 - Assigned the proportion of the risk of stochastic effects (Includes fatal + non-fatal cancer risks + serious hereditary effects to all generations) resulting from irradiation of that tissue compared to a uniform whole body irradiation.
 - Weighting individual tissue dose to derive the whole body equivalent.

\[
E = \sum_{T} W_T W_R D_T
\]

Evolving Tissue-Weighting Factors

<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>ICRP 26 (1977)</th>
<th>ICRP 60 (1991)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonads</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>Red Bone Marrow</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Colon</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Bladder</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Breast</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Esophagus</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Bone Surface</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Remainder</td>
<td>0.30</td>
<td>0.05</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
OUTLINE

Part I

2. FACTORS THAT INFLUENCE PATIENT RADIATION DOSE

- Radiography
- Fluoroscopy
- Mammography
- Computed Tomography
Dose Affecting Factors

- **X-RAY BEAM ENERGY (KVP):** higher kVp results in lower dose.
- **ADDED FILTRATION:** Higher added filtration results in lower dose.
- **COLLIMATION:** Aggressive collimation reduces the irradiated area as well as scatter radiation.
- **GRIDS:** Grids reduce scatter radiation but increase patient dose.

More Dose Affecting Factors

- **IMAGE RECEPTOR:** Faster speed image receptor reduces patient dose.
- **TUBE CURRENT AND EXPOSURE TIME (mAs):** The patient dose is proportional to mAs.
- **PATIENT SIZE:** It is beneficial to optimize the technique chart for various patient size and anatomic areas.
CR:

- CR plates have lower speed, typically speed 200;
- Data manipulation tools available for digital image processing;
- More added filtration and higher kVp may be used to reduce patient dose.

DR:

- Usually, DR speed is faster.
- DR speed can be programmed according to the acceptable image noise level.

Dose Affecting Factors in Mammography

- Target materials: Molybdenum/Rhodium.
- Filter materials: filter target combination.
- Grids: The Bucky factor for mammography grids is usually in the range of 2-3.
- Mag mode: magnification increases dose.
- Compression
- Breast size and tissue composition
- kVp is 24-30 kVp. RBE for such low energy x-ray photons is higher (BJR 79(2006):195-200).
Dose Affecting Factors in Fluoroscopy

- Pulsed fluoroscopy vs. continuous fluoroscopy;
- Modern fluoroscopy systems are entirely automated.
- Various programmable features are available.

ESER Reduction With Added Filtration
22 cm FOV, continuous fluoroscopy

Acrylic Phantom Thickness (cm)
ESER (R/min)

- 0.0mm Cu
- 0.1mm Cu
- 0.2mm Cu
- 0.3mm Cu

ADULT DIAGNOSTIC CORONARY ANGIOGRAPHY
(BASELINE: 16cm FoV, C PLUS, 30pps, GRID, 25cm PMMA)

SELECTABLE VARIABLES

PERCENT RADIATION DOSE (%)
Factors Affecting CTDI

• X-RAY BEAM ENERGY (KVP): higher kVp results in higher CTDI values.
• X-RAY TUBE CURRENT (mA): dose is proportional to mAs.
• TUBE ROTATION TIME: dose is proportional to mAs.
• PITCH: inversely proportional to dose.
• X-RAY BEAM COLLIMATION: thinner collimation results in higher CTDI values.

Factors Affecting CTDI (…continued)

• PATIENT SIZE: smaller patient size results in higher CTDI values.
• DOSE REDUCTION TECHNIQUE, i.e., mA modulation technique
• DETECTOR CONFIGURATION
• SLICE THICKNESS
• ADDED FILTRATION
• GEOMETRIC EFFICIENCY
Take a guess

If the body size is reduced from 32 cm in diameter to 16 cm in diameter, the CTDI will be __________.

- A. the same
- B. increased by 50%
- C. doubled
- D. more than doubled

Body Scan

Nickoloff, et al, AAPM Annual Meeting, Seattle, WA, 2005
COMPARISON OF BODY CT RADIATION DOSE PER 100 mAs vs. WEIGHT

RADIATION DOSE (mGy / 100 mAs)

PATIENT WEIGHT (lbs.)

- CTvol / 100 mAs
- MEAS. / 100 mAs
OUTLINE
Part I

3. PRACTICAL METHODS FOR ESTIMATING PATIENT RADIATION DOSES WITH REFERENCES

Phantoms

- Acrylic phantoms
- Anthropomorphic phantoms:
- Mathematical phantoms:
 - Reference Man
Limitations of Tabular Conversion Factors

- The reference person (male 154lb, female 128lb) has a fixed size.
- The number of exam types is limited.
- The number of exam settings is limited: field size, SID, etc.
- The number of organ types is limited.
- The data were based upon cancer detriment index published earlier (need updated).
Organ Dose Estimation from ESE for Radiography

- This handbook contains data from which absorbed dose to selected tissues can be estimated.
- Monte Carlo simulation.
- Using reference male/female.
- Specific to exam and equipment; for selected common projections only.

Free download at http://www.fda.gov/cdrh/ohip/organdose.html

Example: AP Chest Steps for Tissue Dose Estimation

- Measure exposure mR/mAs and HVL on the machine;
- Figure out the techniques (kVp and mAs) for the particular image;
- Calculate patient entrance skin exposure (ESE).
- Look up in the handbook for corresponding conversion factors.
<table>
<thead>
<tr>
<th>Tissue Doses (Rads) and Cals</th>
<th>Lungs</th>
<th>Active Bone Marrow</th>
<th>Thyroid</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>3.5</td>
<td>2.5</td>
<td>3.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Female</td>
<td>3.5</td>
<td>2.5</td>
<td>3.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Example: AP Chest
ACR CT ACCREDITATION FORM

Section 11 - Radiation Dosimetry (Adult Body)

Use the TAB key to move between data entry cells in the column named *Measured*

<table>
<thead>
<tr>
<th>CTDI Body Phantom (32-cm diameter PMMA Phantom)</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>kVp</td>
<td>120</td>
</tr>
<tr>
<td>mA</td>
<td>480</td>
</tr>
<tr>
<td>Exposure time per rotation (s)</td>
<td>0.5</td>
</tr>
<tr>
<td>Z axis collimation T (mm)</td>
<td>3</td>
</tr>
<tr>
<td># data channels used (N)</td>
<td>6</td>
</tr>
<tr>
<td>Axial (A): Table Increment (mm) = (I)</td>
<td>24</td>
</tr>
<tr>
<td>OR Helical (H): Table Speed (mm/rot) = (I)</td>
<td>100</td>
</tr>
<tr>
<td>Active Chamber length (mm)</td>
<td>1.98</td>
</tr>
<tr>
<td>Chamber correction factor</td>
<td></td>
</tr>
</tbody>
</table>
CTDI$_{vol}$ and DLP

\[CTDI_{vol} = \frac{1}{\text{pitch}} CTDI_w \]

where pitch is the ratio of table increment per tube rotation divided by total x-ray beam width of all collimations.

\[DLP = CTDI_{vol} \times \text{scan length} \]

Effective Dose in CT

- European Guidelines on Quality Criteria for CT
 (http://www.drs.dk/guidelines/ct/quality/index.htm)

<table>
<thead>
<tr>
<th>Region of body</th>
<th>Normalized Effective Dose (mSv/mGy-cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>0.0023</td>
</tr>
<tr>
<td>Neck</td>
<td>0.0054</td>
</tr>
<tr>
<td>Chest</td>
<td>0.017</td>
</tr>
<tr>
<td>Abdomen</td>
<td>0.015</td>
</tr>
<tr>
<td>Pelvis</td>
<td>0.019</td>
</tr>
</tbody>
</table>
Software Resources

Software programs to calculate organ dose using Monte Carlo Techniques:

- www.hpa.org.uk (NRPB):
 XDOSE, CHILDOSE, CTDOSE
- www.vamp-gmbh.de (company for CT):
 ImpactDose

PATIENT RADIATION DOSES IN DIAGNOSTIC RADIOLOGY… part 2

EDWARD L. NICKOLOFF, D.Sc.
DEPARTMENT OF RADIOLOGY
COLUMBIA UNIVERSITY &
NEW YORK-PRESBYTERIAN HOSPITAL
NEW YORK, NY
TYPICAL PATIENT RADIATION DOSES

GI SPOT (1)

<table>
<thead>
<tr>
<th>EXAMINATION & PROJECTION</th>
<th>1st QUARTILE (mGy)</th>
<th>MEDIAN (mGy)</th>
<th>3rd QUARTILE (mGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEST PA</td>
<td>0.08</td>
<td>0.11</td>
<td>0.46</td>
</tr>
<tr>
<td>ABDOMEN AP</td>
<td>1.7</td>
<td>2.4</td>
<td>3.4</td>
</tr>
<tr>
<td>LS SPINE AP</td>
<td>2.0</td>
<td>2.8</td>
<td>4.2</td>
</tr>
<tr>
<td>GI FLUORO / min</td>
<td>3.39</td>
<td>48.7</td>
<td>69.8</td>
</tr>
<tr>
<td>GI SPOT (1)</td>
<td>2.21</td>
<td>3.30</td>
<td>4.83</td>
</tr>
<tr>
<td>CTDvol HEAD</td>
<td>43</td>
<td>58</td>
<td>75</td>
</tr>
<tr>
<td>CTDvol BODY</td>
<td>11</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>MAMMO</td>
<td>1.0</td>
<td>1.4</td>
<td>1.9</td>
</tr>
</tbody>
</table>

* FROM: WWW.CRCPD.ORG WEBSITE & ACR MAMMO
DIAGNOSTIC RADIOLOGY DOSE REFERENCE LEVELS (DRL)

DIAGNOSTIC REFERENCE LEVELS

- VOLUNTARY FOR COMPARISON
 - BASED UPON NATIONWIDE SURVEYS
 - NOT FOR REGULATORY PURPOSES
- GUIDANCE LEVEL FOR INVESTIGATION... IF ABOVE
 - MAY BE APPROPRIATE BECAUSE OF PATIENT SIZE OR CLINICAL COMPLEXITY
 - MAY BE SUBOPTIMAL USAGE OF EQUIPMENT
 - MAY BE EQUIPMENT PROBLEMS
- TYPICALLY REFERENCE LEVEL IS THIRD QUARTILE OR ABOUT 80% OF SURVEY
 - MEAN + 0.70 σ → 75 %
 - MEAN + 1.00 σ → 84 %
- DIRECTED TOWARDS RADIATION DOSE REDUCTION
ACR / AAPM Reference Values for Adults

<table>
<thead>
<tr>
<th>EXAMINATION & PROJECTION</th>
<th>REFERENCE VALUE (mGy / IMAGE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEST PA</td>
<td>0.25</td>
</tr>
<tr>
<td>ABDOMEN AP</td>
<td>4.50</td>
</tr>
<tr>
<td>LS SPINE AP</td>
<td>5.00</td>
</tr>
<tr>
<td>CERVICAL SPINE AP</td>
<td>1.25</td>
</tr>
<tr>
<td>GI FLUORO / min</td>
<td>65.0</td>
</tr>
<tr>
<td>CTDic HEAD</td>
<td>60.0</td>
</tr>
<tr>
<td>CTDlp BODY</td>
<td>40.0</td>
</tr>
<tr>
<td>MAMMO</td>
<td>3.00 (MQSA)</td>
</tr>
</tbody>
</table>

ACRIN Mammography Data

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SCREEN-FILM</th>
<th>FFDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN THICK.</td>
<td>5.29 cm</td>
<td>5.28 cm</td>
</tr>
<tr>
<td>1 σ THICK.</td>
<td>1.37 cm</td>
<td>1.45 cm</td>
</tr>
<tr>
<td>MEAN DOSE</td>
<td>2.37 mGy</td>
<td>1.88 mGy</td>
</tr>
<tr>
<td>1 σ DOSE</td>
<td>0.99 mGy</td>
<td>0.68 mGy</td>
</tr>
<tr>
<td>MEAN + 1σ DOSE</td>
<td>3.36 mGy</td>
<td>2.56 mGy</td>
</tr>
</tbody>
</table>

From Drs. Eric Berns & Ed Hendrick at Northwestern Univ.
UK Diagnostic Reference Levels 2000

<table>
<thead>
<tr>
<th>EXAMINATION & PROJECTION</th>
<th>DRL (mGy/image)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKULL AP/PA</td>
<td>3.0</td>
</tr>
<tr>
<td>SKULL LAT</td>
<td>1.5</td>
</tr>
<tr>
<td>CHEST PA</td>
<td>0.2</td>
</tr>
<tr>
<td>CHEST LAT</td>
<td>1.0</td>
</tr>
<tr>
<td>THOR. SPINE AP</td>
<td>3.5</td>
</tr>
<tr>
<td>THOR. SPINE LAT</td>
<td>16</td>
</tr>
<tr>
<td>LS SPINE AP</td>
<td>6.0</td>
</tr>
<tr>
<td>LS SPINE LAT</td>
<td>14.0</td>
</tr>
</tbody>
</table>

WEBSITE: www.hpa.org.uk/radiation

UK Diagnostic Reference Levels 2000

<table>
<thead>
<tr>
<th>EXAMINATION & PROJECTION</th>
<th>DRL as DAP (Gy-cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABDOMEN AP</td>
<td>3.0 (6 mGy/image)</td>
</tr>
<tr>
<td>PELVIS AP</td>
<td>3.0 (4 mGy/image)</td>
</tr>
<tr>
<td>BARIUM SWALLOW*</td>
<td>11</td>
</tr>
<tr>
<td>BARIUM MEAL*</td>
<td>13</td>
</tr>
<tr>
<td>BARIUM ENEMA*</td>
<td>31</td>
</tr>
<tr>
<td>RETRO. PYLEO.*</td>
<td>13</td>
</tr>
<tr>
<td>Dx CORONARY ANGIOGRAPHY*</td>
<td>36</td>
</tr>
</tbody>
</table>

* FOR ENTIRE PROCEDURE
OTHER EUROPEAN DRL

<table>
<thead>
<tr>
<th>EXAMIN. & PROJ.</th>
<th>IRELAND (mGy/im.)</th>
<th>CEC (mGy/im.)</th>
<th>SWITZERLAND (mGy/im.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEST PA</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>ABDOMEN AP</td>
<td>6.0</td>
<td>10.0</td>
<td>7.0</td>
</tr>
<tr>
<td>PELVIS AP</td>
<td>7.0</td>
<td>10.0</td>
<td>7.8</td>
</tr>
<tr>
<td>LS SPINE AP</td>
<td>8.0</td>
<td>10.0</td>
<td>8.7</td>
</tr>
<tr>
<td>LS SPINE LAT</td>
<td>24.0</td>
<td>30.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>

DRL FOR PEDIATRIC PATIENTS

<table>
<thead>
<tr>
<th>EXAMINATION & PROJECTION</th>
<th>DRL [FOR 5 YRS. OLD]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKULL AP</td>
<td>1.25 mGy/image</td>
</tr>
<tr>
<td>CHEST PA/AP</td>
<td>0.11 mGy/image</td>
</tr>
<tr>
<td>ABDOMEN AP</td>
<td>0.58 mGy/image</td>
</tr>
<tr>
<td>PELVIS AP</td>
<td>0.51 mGy/image</td>
</tr>
<tr>
<td>BARIUM MEAL</td>
<td>2.0 Gy-cm²</td>
</tr>
</tbody>
</table>
PEDIATRIC PATIENT DOSES

• NEED TO SCALE FOR AGE AND SIZE
 – WEIGHT CORRELATES BEST
• TO SCALE RADIATION DOSE WITH AGE, A ROUGH APPROXIMATION:
 – AGE 5 YRS → 1 YRS USE 0.5 - 0.6 x’s
 – AGE 5 YRS → 10 YRS USE 1.5 - 2.0 x’s
 – AGE 10 YRS → 15 YRS. USE 1.5 - 2.0 x’s
 – AGE 15 YRS → ADULT USE 1.5 - 2.0 x’s
• SCALING FOR HEAD IMAGING LESS

FETAL DOSE ESTIMATIONS
ESTIMATION OF FETAL RADIATION DOSES

• FROM FDA 92-8031 “HANDBOOK OF SELECTED TISSUE DOSE FOR.....”
• DEPENDS UPON: kVp, HVL, PROJ., WAVEFORM, PAT. SIZE, FoV, etc.
• MULTIPLY ESD (w/o BACK SCATTER) FETUS IN DIRECT BEAM BY:
 – FOR AP VIEW, USE 0.35 – 0.50 or “4 / 10”
 – FOR PA VIEW, USE 0.17 – 0.35 or “1 / 4”
 – FOR LAT VIEW, USE 0.5 – 0.13 or “1/ 10”

ESTIMATION OF FETAL RADIATION DOSES

• ESD OUTSIDE OF THE DIRECT X-RAY BEAM:
 – AT EDGE OF COLLIMATION, ESD IS 20-30% OF DIRECT BEAM ESD
 – EACH 4 cm OUTSIDE OF DIRECT BEAM REDUCES ESD BY 40-60% OF DIRECT BEAM ESD (except in lungs)
 – BEYOND 16 cm ESD < 1% OF DIRECT BEAM IGNORE DOSE (most cases)
 – CORRECT FOR DEPTH ≈ (4/10) FOR AP
• DEPENDS UPON STAGE OF PREGNANCY
RADIATION BIO-RISKS

SKIN ERYTHEMIA

- EARLY TRANSIENT ERYTHEMA 2 Gy
- SIGNIFICANT ERYTHEMIA 6 Gy
- DRY DESQUAMATION 10 Gy
- MOIST DESQUAMATION 15 Gy
- LATE ERYTHEMA & NECROSIS 15 - 20 Gy
- TEMPORARY EPIILATION 3 – 6 Gy
- PERMANENT EPIILATION > 7 Gy
- CONCERN: INTERVENTIONIAL ANGIOGRAPHY & CARDIAC STUDIES

PARRY RA, GLAZE SA & ARCHER BR...RADIOGRAPHICS 19(5):1289-302
PROBABILITY OF CATARACT INDUCTION

EYE LENS DOSE (cGy)

LATENT PERIOD
3 -17 YRS ... AVER 7 YRS

EXCESS CANCER MORTALITY BY AGE AT EXPOSURE
[NON-LEUKEMIA MORTALITIES FROM BEIR V REPORT]
RADIATION INDUCED CANCER RISKS

- **FATAL CANCER** = 15.3% / Sv FOR FEMALE AND 12.8% / Sv MALES AT 5 YRS AGE... BEIR V
- **FATAL CANCERS** = 13.5% / Sv FOR FEMALES AND 8.5% / Sv MALES AT 5 YRS... BEIR VII
- **FATAL CANCERS** = 5.7% / Sv AT 40 - 45 YRS AGE ... BEIR V & 4.3% / Sv BEIR VII
- **FATAL CANCERS** = 2.8% / Sv AT 70 YRS AGE
- **TYPICAL [4.3% FATAL + 2.9% NON-FATAL] / Sv**
- **EXPRESSION PERIOD IS LONG**
 - 0 - 15 YRS FOR LEUKEMIA
 - 10 - > 30 YRS FOR SOLID TUMORS
- **SPREAD SAME DOSE ANNUALLY THROUGH LIFETIME PRODUCES FATAL CANCERS ≈ 4.9% / Sv**

* SINGLE DOSE OF 1.0 Sv ... LINEARLY SCALED

FETAL RADIATION DOSE RISKS

- **FIRST 8-10 DAYS.... PRE-IMPLANTATION PERIOD: 0 – 3% / cGy FATAL/ABORT**
- **FIRST TRIMESTER... 2 – 15 WEEKS**
 - MICROCEPHALY ≤ 0.5 – 1% / cGy
 - SEVERE RETARDATION ≤ 0.4% / cGy WITH THRESHOLD > 20 – 40 cGy
 - I.Q. DEFICIT THRESHOLD > 10 cGy
 - SEVERE MALFORMATION > 50 – 100 cGy
- **2ND & 3RD TRIMESTERS... > 15 – 24 WEEKS**
 - INCREASED RISK OF LEUKEMIA ... 3 x’s ADULT
 - INCREASED RISK OF CANCER ... 4 - 5 x’s ADULT
 - CANCER RISK ≤ 0.25 - 0.48 % / cGy

Wagner LK et al., *Exposure of the Pregnant Patient to Dx Radiations and BEIR V & BEIR VII reports*
SEVERE RADIATION INDUCED GENETIC RISKS

- **AUTOSOMAL DOMINANT & X-LINKED**
 - 0.075 – 0.2% / Sv BEIR V
- **CHRONIC**
 - 0.025 – 0.12 % / Sv HP 80(4):363
- **CONGENTIAL**
 - 0.1 - 0.2 % / Sv HP & BEIR V
- **TOTAL GENETIC EFFECTS**
 - 0.3 – 0.47 % / Sv Health Phys 80(4):363
 - 1.3 % / Sv NCRP No. 116
 - 1.7% to 2.8% / Sv BEIR V & BEIR VII
 - **DOUBLING DOSE IS ABOUT 0.80 – 1.0 Sv**

EXAMPLES OF GENETIC MUTATION DISEASES

- **AUTOSOMAL DOMINANT**
 - Retinoblastoma, intestinal polyposis, Marfan syndrome, polycystic kidneys, Huntington’s
- **X-LINKED RECESSIVES**
 - Hemophilia, Incontinentia, pigmenti, Orofaciodigital syndrome
- **CHRONIC DISEASE**
 - Grave’s, diabetes mellitus, asthma, coeliac, psoriasis, scoliosis
- **CONGENITAL ABNORMALITIES**
 - Spina bifida, cleft lip, dislocation of hip, inguinal hernia, ventricular septal defects, heart disease, stroke
RADIATION DOSE & CNS FUNCTION

• A RELATIVELY UNEXPLORED AREA
 – VISUAL MOTOR CO-ORDINATION
 – COGNITION FUNCTIONS
 – INTELLIGENCE QUOTIENT (I.Q.)
 – ATTENTION DEFICIT
 – SOCIAL SKILLS
 – SUCCESS IN SCHOOL
• PUBLICATIONS REGARDING:
 – RADIATION THERAPY OF HEAD
 – VARIOUS TREATMENTS TO SINUS etc
 – FETAL IRRADIATIONS
 – ATOM BOMB DATA DOES NOT CORRELATE

RADIATION DOSE & CNS FUNCTIONS

• STUDY OF 3094 SWEDISH MEN WHO RECEIVED HEAD RADIATION BEFORE 18 MONTHS (AVERAGE FRONTAL BRAIN DOSE 100 mGy): [BJM 2004...Per Hall]
 – DECREASED H.S. ATTENDANCE
 – LOWER COGNITIVE TEST SCORES
 – DECREASED LOGICAL REASONING & LEARNING ABILITIES
• BEIR V REPORT FOR FETAL DOSES:
 – 43% SEVERE MENTAL RETARDATION AT 1 Gy
 – INTELLIGENCE SCORES DOWN 21-29 POINTS/ 1 Gy
 – THRESHOLD FOR RETARDATION 0.2 - 0.4 Gy
 – MOST SENSITIVE PERIOD 8-15 WEEKS POST CONCEPTION (7 – 24 WEEKS TOTAL)
DEALING WITH THE PUBLIC

OBSTACLES IN COMMUNICATING WITH PUBLIC ABOUT RADIAITON

• AMERICANS BELIEVE GOV’T HAS LIED TO THEM
• PUBLIC BELIEVES RADIATION IS INVISIBLE AND UNDETECTABLE (TRUTH: CAN DETECT DOWN TO BACKGROUND LEVELS)
• AVERAGE PERSON HAS LIMITED SCIENTIFIC KNOWLEDGE OF UNIVERSE
• THERE IS A GENERAL FEAR ABOUT CANCER, BIRTH DEFECTS AND RADIATION
• PUBLIC DOES NOT KNOW “JARGON” OR MATHEMATICS OF SCIENTISTS
• PUBLIC NOT COGNITIVE OF DAILY EXPOSURE TO RADIATION AND OTHER LIFE HAZARDS & RISKS
HINTS FOR DEALING WITH THE PUBLIC

• OBTAIN INSTITUTIONAL APPROVALS FOR ANY RELEASES OF INFORMATION
• PROVIDE AN BRIEF INTRODUCTION TO YOURSELF
 – TITLE & POSITION IN ORGANIZATION
 – COLLEGE DEGREES & MAJOR
 – EXPERIENCE
 – BOARD CERTIFICATION / LICENSES
• IDENTIFY “WHAT INFORMATION” YOU WILL PROVIDE & DISCUSS
• HAVE DOCUMENTATION:
 – WRITTEN
 – VIDEO / AUDIO
 – WITNESS TO THE PRESENTATION

HINTS FOR DEALING WITH THE PUBLIC

• SPEAK OR WRITE IN NON-TECHNICAL TERMS KEEP IT SIMPLE
• DO NOT MISREPRESENT THE SITUATION or COVER-UP FACTS
• DO NOT MINIMIZE PUBLIC CONCERNS – BE SYMPATHETIC & LISTEN
• PROVIDE REFERENCE MATERIAL
 – WEB SITES
 – LITERATURE
 – CONTACT ORGANIZATIONS
HINTS FOR DEALING WITH THE PUBLIC

- **DO NOT** ANSWER QUESTIONS THAT YOU ARE NOT QUALIFIED TO DISCUSS
 - LEGAL
 - MEDICAL
 - ADMINISTRATIVE
- **DO NOT** SPECULATE ABOUT ISSUES
- **DO NOT** INTERJECT PERSONAL OPINIONS
- **RELATE** RADIATION DOSES TO PRACTICAL VALUES
 - COMMON COMPARABLE RADIATION LEVELS
 - RELATE RADIATION RISKS TO OTHER RISKS

RELATING RADIATION LEVELS & RISKS

- **BACKGROUND EQUIVALENT RADIATION TIME** (BERT) Dr. J Cameron, HP Newsletter
 - 1 mSv / YR WITHOUT WITHOUT RADON
 - 3 mSv / YR WITH RADON
- **CROSS HAZARD COMPARISON** ... AB Brill, SNM FATAL RISKS = 1 case in 1 million
 - 1 P/A CHEST X-RAY
 - DRIVING 30 MILES BY CAR
 - FLYING 1,000-2,500 MILES BY JET AIRPLANE*
 - DRINKING 0.5 LITER OF WINE
 - SMOKING 1 - 10 CIGARETTES*
 - 40 TABLESPOONS OF PEANUT BUTTER
 - 1 HOUR OF LIFE AT 74 YRS OLD
 - * modified for reference
<table>
<thead>
<tr>
<th>X-RAY EXAM</th>
<th>EFF.DOSE (mSv)</th>
<th>ABS. CANCER RISKS</th>
<th>EQUIV. CIGARET.</th>
<th>CAR TRAVEL MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CHEST P/A</td>
<td>.032 (0.075)</td>
<td>1.3 x 10^-6</td>
<td>9 (31)</td>
<td>23 (80)</td>
</tr>
<tr>
<td>HEAD CT</td>
<td>2.0</td>
<td>1.2 x 10^-4</td>
<td>830</td>
<td>2,120</td>
</tr>
<tr>
<td>BARIUM ENEMA</td>
<td>0.54 (20)</td>
<td>2 x 10^-5</td>
<td>148 (8,310)</td>
<td>357 (21,230)</td>
</tr>
<tr>
<td>BONE SCAN</td>
<td>4.40</td>
<td>1.8 x 10^-4</td>
<td>1,300</td>
<td>3,200</td>
</tr>
</tbody>
</table>

www.umich.edu/~radinfo/introduction/risks.htm AND

RELATIVE RISKS OF DEATH IN ONE YEAR

<table>
<thead>
<tr>
<th>TERM</th>
<th>RISK RANGE</th>
<th>EXAMPLE</th>
<th>RISK ESTIMATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH</td>
<td>> 1:100</td>
<td>Space Shuttle Crew Fatal</td>
<td>1 : 100</td>
</tr>
<tr>
<td>MODERATE</td>
<td>1:100 to 1:1,000</td>
<td>Smoking 10 cigarette / day</td>
<td>1:200</td>
</tr>
<tr>
<td>LOW</td>
<td>1:1,000 to 1:10,000</td>
<td>Accident on the road</td>
<td>1:8,000</td>
</tr>
<tr>
<td>VERY LOW</td>
<td>1:10,000 to 1:100,000</td>
<td>Accident at home</td>
<td>1:26,000</td>
</tr>
<tr>
<td>MINIMAL</td>
<td>1:100,000 to 1:1,000,000</td>
<td>Homocide</td>
<td>1:100,000</td>
</tr>
<tr>
<td>NEGLIGIBLE</td>
<td><1:1,000,000</td>
<td>Hit by lightning</td>
<td>1:10M</td>
</tr>
</tbody>
</table>

J. Lakey, Health Physics 75(4):367-374; 1998
HINTS FOR DEALING WITH THE PUBLIC

• BE COURTEOUS ... NOT CURT
• DO NOT BE CONDESCENDING IN YOUR ATTITUDE
• DO NOT GET "SIDE TRACKED" ON OTHER ISSUES
• ASK IF THERE IS ANYTHING ELSE YOU CAN DO TO ANSWER THEIR CONCERNS
• THANK EVERYONE FOR THEIR ATTENTION
• EXCUSE YOURSELF

THANK YOU FOR YOUR ATTENTION TIME FOR DISCUSSIONS

THIS PRESENTATION IS THE PROPERTY OF RADIOLOGY PHYSICS AT COLUMBIA UNIVERSITY. NO REPRODUCTION OR USAGE OF THE MATERIAL IS PERMITTED WITHOUT WRITTEN APPROVAL OF THE AUTHORS.