Using SPECT-Guidance to Reduce Intensity Modulated Radiation Therapy (IMRT) Dose to Functioning Lung

Sarah M. McGuire Ph.D., Sumin Zhou Ph.D., Lawrence B. Marks M.D., Mark Dewhirst Ph.D. D.V.M., Fang-Fang Yin Ph.D., and Shiva K. Das Ph.D.

Department of Radiation Oncology Physics
Duke University Medical Center
In a recent retrospective study at our institution: 34/172 lung cancer patients diagnosed with Grade 2+ radiation-induced pneumonitis (initiation/increase in steroids, oxygen).

Asumption: all areas of normal lung have equal function.
Reality: lung function is spatially heterogeneous.

Reduce lung toxicity: reduce dose to higher functioning normal lung ⇒ better quality of life!

Purpose: Develop a manual algorithmic methodology for integrating SPECT-guidance into the ECLIPSE treatment planning optimization process.
Single Photon Emission Computed Tomography (SPECT) at DUMC

- 4 mCi 99mTc-MAA administered intravenously
- 3 camera system equipped with low energy, high resolution collimators
- 3 cameras are rotated through a 360° rotation at 3° intervals using a step and shoot technique
- Each camera acquired 40 angular views in approximately 25-30 min
- 128 x 128 resolution, pixel size = 0.356 cm
Design ... of SPECT Cameras
Why use SPECT images in RT?

- SPECT intensity is directly proportional to perfusion as shown in phantom and animal studies.

- Perfusion in lung is a reasonable measure of function based on % perfused lung resected correlated to % loss of function (perfusion vs. ventilation).

- The combination of functional lung information and IMRT technology allows sparing of the ‘best’ parts of the lung.
Methodology

- 9 6MV beams oriented at 30 degree spacing on predominant tumor side. Primary tumor to 40 Gy, boost to 66 Gy.

- Constraints:

 - Lung: 20% / 20 Gy
 - Spinal Cord: 0% / 40 Gy
 - Esophagus: 30% / 55 Gy
 - Heart: 50% / 45 Gy
 - PTV 40: 100% / 40 Gy (Primary)
 - PTV 66: 100% / 66 Gy (Boost)
 - Body: 0% / 40 or 66 Gy
Methodology

- Initial IMRT plan generated without SPECT-guidance. Dose-volumes obtained in this plan are used in SPECT-guided plan.
- SPECT image is segmented into 4 areas from low to high intensity.
Create a SPECT guided plan using Dose-Volume constraints from Base Plan

Set all SPECT structures to volume Constraint = 0 and maximum priority

Set current SPECT structure to least Functional region (i = 1)
Create a SPECT guided plan using Dose-Volume constraints from Base Plan

Set all SPECT structures to volume Constraint = 0 and maximum priority

Set current SPECT structure to least Functional region (i = 1)

Optimize

PTV dosage satisfied? Dose-Volume constraints satisfied?

NO

YES

Stop and calculate dose
Create a SPECT guided plan using Dose-Volume constraints from Base Plan

Set all SPECT structures to volume Constraint = 0 and maximum priority

Set current SPECT structure to least Functional region (i = 1)

Optimize

PTV dosage satisfied? Dose-Volume constraints satisfied?

Further relaxation of SPECT structure i possible?

YES

NO

YES

NO

Stop and calculate dose

Relax volume constraint and Priority of SPECT structure i
Create a SPECT guided plan using Dose-Volume constraints from Base Plan

Set all SPECT structures to volume Constraint = 0 and maximum priority

Set current SPECT structure to least Functional region (i = 1)

Optimize

PTV dosage satisfied? Dose-Volume constraints satisfied?

Relax volume constraint and Priority of SPECT structure i

Further relaxation of SPECT structure i possible?

YES

Set current SPECT structure to next higher Region i = i + 1

NO

NO

YES

Stop and calculate dose
How can we measure benefit?

- Dose map
- Dose-Function Histogram (DFH) vs. Dose-Volume Histogram (DVH)
 - DVH measures % volume above a particular dose
 - DFH measures % function above a particular dose
- F_{20} and F_{30} vs. V_{20} and V_{30}
 - V_D is the % volume that receives dose above D Gy
 - F_D is the % function that receives dose above D Gy
Dose distribution

Non SPECT-guided plan

SPECT-guided plan
DVHs of targets

- Primary
- Boost

Graphs showing dose-volume histograms (DVHs) with percentage volume plotted against dose (Gy) for Base Plan and SPECT Plan. The graphs illustrate the distribution of doses received by different volumes of tissue.
DVHs and volume sparing above 20Gy for whole lung

![Graph showing DVHs for whole lung](image)

Table: V20 Reductions

<table>
<thead>
<tr>
<th>Patient</th>
<th>Base (%)</th>
<th>SPECT (%)</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>55.9</td>
<td>49.3</td>
<td>11.8</td>
</tr>
<tr>
<td>B</td>
<td>49.7</td>
<td>47.9</td>
<td>3.7</td>
</tr>
<tr>
<td>C</td>
<td>48.2</td>
<td>42.6</td>
<td>11.5</td>
</tr>
<tr>
<td>D</td>
<td>32.0</td>
<td>30.5</td>
<td>4.7</td>
</tr>
<tr>
<td>E</td>
<td>43.1</td>
<td>41.2</td>
<td>4.5</td>
</tr>
<tr>
<td>Average</td>
<td>7.2 ± 4.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dose Function Histograms: SPECT Structures

(one patient)

![Graphs showing dose function histograms for different intensity structures of SPECT regions IDFH.](image)

- **Highest intensity SPECT region DFH**
- **2nd Highest intensity SPECT region DFH**
- **3rd Highest intensity SPECT region DFH**
- **Lowest intensity SPECT region DFH**
Lung Dose-Function Histograms (5 patients)
Lung function sparing above 20 Gy, 30 Gy

<table>
<thead>
<tr>
<th>Patient</th>
<th>F_{20} Base (%)</th>
<th>F_{20} SPECT (%)</th>
<th>% Reduction</th>
<th>F_{30} Base (%)</th>
<th>F_{30} SPECT (%)</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>60.6</td>
<td>51.0</td>
<td>15.8</td>
<td>37.9</td>
<td>32.0</td>
<td>15.6</td>
</tr>
<tr>
<td>B</td>
<td>56.3</td>
<td>51.1</td>
<td>9.2</td>
<td>37.2</td>
<td>35.1</td>
<td>5.6</td>
</tr>
<tr>
<td>C</td>
<td>52.0</td>
<td>44.6</td>
<td>14.2</td>
<td>29.0</td>
<td>27.3</td>
<td>5.9</td>
</tr>
<tr>
<td>D</td>
<td>17.2</td>
<td>13.6</td>
<td>20.9</td>
<td>8.9</td>
<td>7.3</td>
<td>18.0</td>
</tr>
<tr>
<td>E</td>
<td>46.1</td>
<td>42.4</td>
<td>8.0</td>
<td>26.5</td>
<td>24.5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>13.6 ± 5.2</td>
<td></td>
<td>Average</td>
<td>10.5 ± 5.8</td>
<td></td>
</tr>
</tbody>
</table>
SPECT distribution can be very spatially heterogeneous

- $F_{20} = -14.3\%$ $F_{30} = -5.9\%$

- $F_{20} = -20.9\%$ $F_{30} = -18.0\%$
Conclusions

- Incorporating SPECT-guidance into IMRT planning for thoracic tumors reduces irradiated functioning lung volumes \Rightarrow reduced toxicity.

- Algorithm was manually fine-tuned. Currently working on automating the procedure via ECLIPSE API.

- Number of SPECT segments may affect avoidance. Also currently working on finding the optimal number of SPECT segments.
Acknowledgments

- Varian Medical Systems
- NIH Grant No. CA69579