

## The Principles of Quantitative MRI

Geoffrey D. Clarke Dept. of Radiology

University of Texas Health Science Center at San Antonio

#### Overview

- Excitation & Signal Collection Process
- Gradients for Spatial Localization
- Measuring Tissue Volumes
- Measuring NMR Properties of Tissues
- Tissue Physiology Measurements
- Tissue Biochemistry Measurements

#### **Overview**

- Excitation & Signal Collection Process
- Gradients for Spatial Localization
- Measuring Tissue Volumes
- Measuring NMR Properties of Tissues
- Tissue Physiology Measurements

## **RF** Nonuniformities

- Radio Frequency Field Nonuniformities are the <u>Single</u> <u>Biggest</u> Cause of Errors in qMRI
- RF Nonuniformities Increase as the B<sub>o</sub>-Field Increases
- Dielectric Resonance Effects Become Pronounced at High B<sub>o</sub>

## **B1 TX Field**

 Directly related to current in TX coil Depends on Q of coil & coil loading Depends on TX Coil Geometry TX power auto-adjusted (pre-scan) -Values should be know to 1% -1% = 0.086 dB TX nonlinearities RF pulse droop

## **NMR Signal**

# $\delta v(t) = \omega_{o} B_{1x,y} M_{x,y} \delta V_{s} \cos(\omega_{o} t)$

B

## **RF Pulse Bandwidth (BW)**

**BW** is inversely proportional to RF pulse duration:



#### **FT Approximation**





## **Slice Selection**



- If constant gradient field is on during the rf pulse:
  - Larmor frequency of spins varies with position
  - The flip angle depends on the local Larmor frequency and the frequency content of the RF field pulse
  - the RF pulse can be "crafted" to contain frequencies in only a specified range

#### **Resonant Frequency Offset**



#### **90° Sinc Pulse Profile**



#### 2 ms, 5-lobe, chemical shift refocused

#### **180° Sinc Inversion Pulse**



#### 2 ms, 5-lobe, chemical shift refocused

#### **Slice Profile Variations**

- Flip Angle varies with location
   Due to B<sub>1</sub>, B<sub>0</sub> field nonuniformities
- Non-linearity of Excitation (Bloch Eqns)
   FT approximation invalid for big flip angles
   Bloch simulator software

http://www-mrsrl.stanford.edu/~brian/mritools.html

\*Brain Hargreave

T1-weighting of excitation profile

## **Bloch Equations**

 A set of simultaneous differential equations that describe the behavior of the magnetization under any conditions.

$$\frac{dM_{z}(t)}{dt} = \gamma[M_{x}(t)B_{y}(t) - M_{y}B_{x}(t)] - \frac{M_{z}(t) - M_{0}}{T_{1}}$$
Magnetization  
along the z-axis
$$\frac{dM_{x}(t)}{dt} = \gamma[M_{y}(t)B_{z}(t) - M_{z}B_{y}(t)] - \frac{M_{x}(t)}{T_{2}}$$
Magnetization  
along the z-axis
$$\frac{dM_{y}(t)}{dt} = \gamma[M_{z}(t)B_{x}(t) - M_{x}B_{z}(t)] - \frac{M_{y}(t)}{T_{2}}$$
Magnetization  
along the y-axis

#### **Poor RF Pulse Calibration**



Miscalibration of FSE 180° RF pulses (left image) is corrected (right image)

## **B1 Field Mapping - Purpose**

- a. Needed for accurate measurement of many NMR parameters, i.e. relaxation times
- b. Enables estimation of systematic errors in parameter measurement
- c. Enable correction of spatial sensitivity variation using reciprocity

## **B1 Field Mapping - Methods**

a. One-pulse read M<sub>x,y</sub>
Venkatsen et al. Magn Reson Med 1998; 40:592
b. Spin Echo (both pulses altered)
Barker et al. BJR 1998; 71: 59-67
c. One-pulse read M<sub>z</sub>
Vaughn et al. Mgn Reson Med 2001; 46: 24

## **B1 Field Mapping**



- One-pulse M<sub>x,y</sub> method
- Hard 1800° pulse preceding 2D field echo sequence
- Bright center is maximum B<sub>1</sub>
- Ring pattern occurs at every 5% change in B<sub>1</sub>-field

Deichmann R et al. Magn Reson Med 2002; 47: 398

#### **Dielectric Resonance Effect**

- Fields inside a sample of diameter, d, can be resonant when  $d = n\lambda$
- This can make the B1 field at the center of the sample larger than at the edges

 This effect is dampened as the conductivity of the sample increases

#### Image Uniformity at 3 Tesla



• B1 field maps in a saline phantom (18 cm diameter)

RL Greenman et al. JMRI 2003, 17(6): 648-655

#### **Dielectric Resonance**



Hoult DI, J Magn Reson Imag, 2000; 12:46-67 24

#### Overview

- Excitation & Signal Collection Process
- Gradients for Spatial Localization
- Measuring Tissue Volumes
- Measuring NMR Properties of Tissues
- Tissue Physiology Measurements
- Tissue Biochemistry Measurements

## **Spin-Echo Sequence**



## **One Dimensional FT**



## **Gradient Subsystems**



## **MRI Gradient Fields**



**Gradient Nonlinearities** are often tolerated as part of trade-offs with gradient field strength or coil size Manufacturers often apply gradient distortion corrections in order to make images appear to be distortion free Influences image quality parameters (SNR, spatial resolution, etc.)

http://www.nbirn.net

## **MRI Gradient Fields**

Sources of Error:

Gradient Amplitude Calibration

-Best about 1% error

Gradient Non-linearities

Eddy Currents

## **Eddy Currents**

- Accelerating current in gradient coils (gradient pulse) causes induced currents in nearby metallic structures.
- These currents produce magnetic fields which, in turn, oppose the magnetic fields of the gradient coils

## **Eddy Currents**

- The magnetic field produced by Eddy Currents have two time-dependent components:
  - An offset of the B<sub>o</sub> field
  - An additional gradient field

$$B_{ec}(\vec{r},t) = \Delta g(\vec{r},t) + \Delta B_o(t)$$

#### **Gradient Waveforms**



## **Eddy Current Preemphasis**



#### **Actively Screened Gradients**

 Reduce gradient field strength outside of gradient coil former - Current in shield is opposite polarity Reduces gradient field in imaging volume also - Improves magnet homogeneity Each gradient coil is associated with a screen coil

- Twice as many amplifiers required

## **Measuring Eddy Currents**



## **Eddy Currents**



Time course of eddy current field offset following different numbers of gradient pulse units

De Deene Y et a. Phys Med Biol 2000; 45:1807-1823

## **Eddy Current Effects on Slice**



Ideal – no eddy currents

worst case

#### pre-gradient train

RF pulse profiles used for T2-relaxometry a) Ideal profile calculated from Bloch equations b) profile showing the influence of eddy currents; c) pre-gradient pulse train establishes steady-state which regularizes the RF pulse profile

De Deene Y et a. Phys Med Biol 2000; 45:1807-1823

#### Overview

- Excitation & Signal Collection Process
- Gradients for Spatial Localization
- Measuring Tissue Volumes
- Measuring NMR Properties of Tissues
- Tissue Physiology Measurements
- Tissue Biochemistry Measurements
## **Brain Volume Measurement**



Jelsing J NeuroImage 2005; 26: 57-65

# **Brain Volume Relationships**



- High agreement between qMRI volumetry and physical sections
- qMRI volumetry is susceptible to high inter-observer variability
- Problems greatest in those regions where tissue margins are poorly defined

Jelsing J NeuroImage 2005; 26: 57-65



Eckstein F et al. Arth & Rheum 2005; 52: 3132-3136

## **MRI in Psychiatry**

 MRI is a safe and non-invasive technique to look into the to measure the human brain's normal anatomy *in vivo*

- Used in the investigation of the pathophysiology of mood disorders:
  - major depression
  - bipolar disorder

Potential for the evaluation of psychiatric therapeutic responses

## **MRI Volume Measurements**





Superior temporal gyrus tracing

Pituitary gland tracing

## **Volumes in Bipolar Disease**

|                                                     | Bipolar            | Healthy<br>Controls | F    | p     |
|-----------------------------------------------------|--------------------|---------------------|------|-------|
| Total left STG volume<br>(cm <sup>3</sup> )         | 12.5 <u>+</u> 1.5  | 13.6 <u>+</u> 2.5   | 4.45 | 0.043 |
| White matter left STG volume (cm <sup>3</sup> )     | 2.79 <u>+</u> 0.56 | 3.12 <u>+</u> 0.73  | 4.23 | 0.048 |
| Gray matter left STG volume (cm <sup>3</sup> )      | 9.7 <u>+</u> 1.3   | 10.5 <u>+</u> 2.1   | 2.36 | 0.134 |
| Total right STG volume (cm <sup>3</sup> )           | 14.9 <u>+</u> 2.3  | 15.3 <u>+</u> 1.9   | 0.57 | 0.454 |
| White matter right<br>STG volume (cm <sup>3</sup> ) | 4.60 <u>+</u> 0.95 | 4.99 <u>+</u> 0.98  | 4.85 | 0.035 |
| Gray matter right STG volume (cm <sup>3</sup> )     | 10.3 <u>+</u> 1.8  | 10.3 <u>+</u> 1.5   | 0.01 | 0.930 |

## **Overview**

- Review of Signal Collection Process
- Review of Spatial Localization Methods
- Measuring Tissue Volumes
- Measuring NMR Properties of Tissues
- Tissue Physiology Measurements

## **Relaxation Times**

- T<sub>1</sub>: longitudinal relaxation time defines recovery of potential for next signal (T<sub>1</sub>=1/R<sub>1</sub>)
- T<sub>2</sub>: transverse relaxation time defines rate of dephasing of MRI signal due to microscopic processes (T<sub>2</sub>=1/R<sub>2</sub>)
- T<sub>2</sub>\*: transverse relaxation time with B<sub>o</sub> inhomogeneity effects added; defines rate of dephasing of MRI signal due to macroscopic and microscopic processes (T<sub>2</sub>\*=1/R<sub>2</sub>\*)



## **Applications for T1 Images**

- Tissue characterization
- Contrast agent uptake studies
- Measurement of Tissue Perfusion
- Measurement of Blood Volume

## **T1 Measurement Sequences**

Inversion Recovery

-180°-90°-180°; the gold standard

- Saturation Recovery 90°-180°
- Stimulated Echo 90°-90°-90°

Look-Locker Sequence (see below)

## **Inversion Recovery**



## Look-Locker Sequence



- Very sensitive to RF pulse errors
- Magnetization recovery rate, T<sub>1</sub><sup>\*</sup>:

$$f_{1}^{*} = \frac{\tau}{\left(\frac{\tau}{T_{1}}\right) - \ln(\cos\alpha)}$$

Look & Locker, Rev Sci Instrum 1970; 41: 250

## **Saturation Recovery for CMRI**



## **T1 Parametric Maps**







(a) T1 Map of tubes of gel doped with Gd-DTPA

(b) T1-weighted image of heart in short axis

(c) T1 parametric map image of heart in (b)

 T1's calculated from short-acquisition period T1 sequence (SAP-T1) with varying delay times

Higgins DM, Med Phys 2005; 32(6):1738-1746

#### For Accurate & Precise T1

- Never Assume RF Flip Angle is Correct
  - Varies over imaged slice due to slice profile
  - Flip angle must be calibrated across slice
- Be careful in assuming magnetization has reached steady state between acquisitions
- Optimize sequence acquisition parameters to ensure maximal SNR
- Always check that fitted conforms to assumed model

## **Transverse Magnetization**

#### **T2\* Decay**



## **Multi-Echo Acquisitions**



## Calculation of T<sub>2</sub>

 $M_{xy} = M_{o} e^{-t/T_{2}}$  $\ln M_{xy} = -1/T_2 t + \ln M_o$  $\ln(M_{xy}/M_{o}) = slope = -1/T_{2}$  $T_2 = -1 / slope$ 

## **Gel Dosimeters**

- Used for 3D Radiation Dosimetry QC
- Relies on direct relationship between relaxation rate, R<sub>2</sub> (R<sub>2</sub>=1/T<sub>2</sub>) of gel following exposure and dose



### **B1 Changes with Slice Position**



## **Effective Flip Angles**



Average transverse magnetization within a slice as a fraction of M<sub>o</sub> for various slice positions for flip angles ranging from 0° to 360°

De Deene Y et a. Phys Med Biol 2000; 45:1825-1839

# **R<sub>2</sub> Calibration**



#### For Accurate & Precise T2

- Never Assume RF Flip Angle is Correct
  - Varies over imaged slice due to slice profile
  - 180° flip angle must be calibrated across slice
- Use multi-echo (vs. dual echo) approach and big TX coils whenever possible
- Analyze and understand eddy current effects on T2 measurement
- In tissues, beware of multi-exponential decay

## **T2\*** Parametric Imaging

 $M_{xy} = M_o e^{-t/T_2^*}$ 

 Similar to T2 measurements but use gradient echo imaging with varying TE

## **Contrast Agent Maps**



#### T1-weighted image

#### Parametric map of $R_2^*$

http://www.research.philips.com/



## **Magnetization Transfer Ratio**



#### Magnetization Transfer Ratio (MTR)

 the difference of the saturated versus non-saturate images relative to the signal in the normal (nonsaturated images)

## **MTR and Aging**

Gray matter and white matter MTR images reveal a quadratic change with age that is primarily attributed to normal demylenation



## Overview

- Review of Signal Collection Process
- Review of Spatial Localization Methods
- Measuring Tissue Volumes
- Measuring NMR Properties of Tissues
- Tissue Physiology Measurements

## **Physiological Measurements**

- Flow bulk motion of blood and other fluids within body
- Perfusion amount of blood traveling through capillaries in ml/s/gm of tissue
- Diffusion random motion of spins in a homogeneous solution
  - Apparent Diffusion Coefficient measured diffusion rate of water through tissue

#### **Attenuation Due to Diffusion**

 $A(TE) = A(0) \exp[-\gamma^2 G^2 D_{app} \delta^2 \alpha^2 (\Delta - \frac{\delta}{\Delta})]$ 

Where: α=π/2;
G is amplitude of diffusion sensitive gradient pulse;
δ is duration of diffusion sensitive gradient;
Δ is time between diffusion sensitive gradient pulses;
D<sub>app</sub> is the apparent diffusion coefficient

## **DWI Basic Pulse Sequence**



### The b-value

- Controls amount of diffusion weighting in image
- The greater the b-value the greater the area under the diffusion-weighted gradient pulses
  - -longer TE
  - stronger and faster ramping the gradients

## **DW MRI on Breast Tumor**



Parametric maps calculated from biomodal exponential decay model:

$$\frac{I}{I_{o}} = P_{1}' \exp(-bD_{1}') + P_{2}' \exp(-bD_{2}')$$

Paran Y et al. NMR Biomed 2004; 17:170-180

5

2.5

0

x10<sup>-4</sup> (mm<sup>2</sup>/s)

## **Anisotropic Diffusion**



#### Restricted diffusion along neural fibers
# **Diffusion Tensor Imaging**

- In anisotropic tissues (neural fibers, muscle fibers) scalar ADC depends on direction of diffusion sensitizing gradient
- Diffusive transport of water can be characterized by an effective diffusion tensor
- Direction of diffusion can be used to create a map showing orientation of myocardial fibers.



Tseng et al., Radiology 2000; 216: 128-139.



# Phase Contrast Imaging



#### Phase Contrast Images

#### Two Signals:

$$\begin{split} S_1 &= S_s + S_m \hspace{0.2cm} ; S_2 = S_s + S_m \hspace{0.2cm} e(i\phi_m) \\ \text{where } \phi_m &= \gamma \hspace{0.2cm} \Delta M_1 \hspace{0.2cm} \upsilon \hspace{0.2cm} (\upsilon = \text{velocity}) \end{split}$$

 $\frac{\text{Complex difference}}{\Delta S = S_2 - S_1 = S_m [e(i\phi_m) - 1] = 2iS_m sin(\phi_m/2)}$   $\frac{\text{Phase difference}}{\Delta \phi = \arg S_2 - \arg S_1, \text{ then}}$   $\upsilon = \Delta \phi / (\gamma \Delta M_1)$ 



### **SNR in Phase Contrast**



## **Flow Phantom Calibration**



Can use commercially available flow pumps to accurately simulate blood flow in various vessel in the body.



http://www.simutec.com/

## **Cardiac Output**





Cardiac Output = 4.01 L/min Stroke Volume = 68 ml

# **Coronary Artery Flow**



## **Myocardial Perfusion**



Short-axis views of patient's heart showing Gd-DPTA Uptake into RV, LV and then myocardium

# **Nonuniformity Correction**

Real-time TrueFISP (GRAPPA=2) cine study was performed between two perfusion scans on the heart of a normal volunteer

$$SI_{normalization} = SI_{perf}/SI_{cine}$$
$$SI_{correction} = SI_{normalization} - SI_{base}$$







# Max Upslope Parametric Map



#### MRI perfusion image

Maximum upslope parametric map

## SUMMARY

Before undertaking qMRI:

Check gradient calibrations
Understand gradient non-linearities
Evaluate eddy currents
Measure RF pulse changes in space
Determine RF receive nonuniformities

### **Quantitative MRI Methods**

 Measuring things with MRI: Diffusion Coefficients -Frequency of a signal -Relaxation rates (T1, T2, MTC) -Velocity of motion -Volumes of tissues

#### Learn More Details ...

