

Scripps Proton Therapy Center: Configuration and Implementation

Anthony Mascia

Proton Symposium
2013 Annual AAPM Meeting
Indianapolis, Indiana USA

Facility Configuration

- Gantry-mounted dual x-ray imaging system
- Full CBCT function
- Internal and external imaging console
- TrueBeam-like treatment console
- Robotic, 6-degree of freedom patient positioner

- Designed treatment capacity: 2400 pts per year
- Planned patient mix:
 - Prostate Cancer: 800 patients/year
 - Lung Cancer: 200 patients/year.
 - Head & Neck Cancers: 200 patients/year
 - Pediatric Cancer: 100 patients/year
 - Breast Cancer: 200 patients/year
 - CNS Tumors: 400 patients/year
 - Other tumor sites

鲁

- Physicians (4)
 - Carl Rossi
 - Huan Giap, Ryan Grover, Andrew Chang
- Physicists (7)
 - Lei Dong
 - Annelise Giebler, Anthony Mascia, Yongbin Zhang, Franko Piskulich, Richard LePage, Luis Perles
- Physicist Assistants
 - To be hired: January 2014
- Dosimetrists (2)
 - First cohort started: July 2013
- Radiation Therapists (5)
 - First cohort started: August 2013

Quality Assurance

Daily Machine QA

Daily Quality Assurance				
QA Item	Tolerances (% or mm)			
1. Dosimetry				
proton output constancy	3%			
proton range in water	1mm			
2. Mechanical / Imaging				
laser localization	2mm			
imaging-treatment coordinate	1mm			
coincidence (one gantry angle)				
collision interlocks	functional			
3. Safety				
door interlock	functional			
door closing safety	functional			
audiovisual monitors	functional			
radiation area monitor	functional			
beam on indicator	functional			

Courtesy PTW

- Duration 15 minutes; performed by RTTs
- In short, an end-to-end test using daily QA detector
- Rotate proton energy daily, Monday Through Friday
- PBS volumetric irradiations (i.e. not single spots)

Weekly Machine QA

Summary

- Comprehensive spot pattern tests
 - Initially performed: weekly
- Deliver a fixed spot pattern at two gantry angles, two energies
- This spot pattern is benchmarked at commissioning
- The physical measurement results and their comparison to benchmark are recorded
- 30 minutes per room

Test Parameters

- Position location of spot on Lynx versus planned location
- Shape ratio of x-axis and y-axis
- Size sigma of x-axis and y-axis
- Output output constancy

Courtesy IBA Dosimetry

Monthly Machine QA

Monthly Quality Assurance					
QA Item	Tolerances (% or mm)				
1. Dosimetry					
proton output constancy	2%				
backup monitor constancy	2%				
proton profile constancy	2%				
proton range constancy	1mm				
2. Mechanical					
lasers coincident at isocenter	1mm				
laser coincident at 50cm from isocenter	2mm				
gantry indicators at cardinal angles	1 degree				
treatment couch position accuracy	1mm / 1 degree				
latch/interlock for range shifter	functional				
3. Safety					
door interlock	functional				
door closing safety	functional				
audiovisual monitors	functional				
radiation area monitor	functional				
beam on indicator	functional				
4. Imaging					
imaging, couch and radiatio coincidence (@ four	1mm				
cardinal angles)	111111				
scaling	1mm				
spatial resolution	baseline				
constrast	baseline				
uniformity and noise	baseline				
dead pixels, artifacts, etc	baseline				

- The Daily + Weekly QA programs are comprehensive and reviewed daily/weekly; detailed trend analysis performed as part of monthly QA
- Monthly QA tests a wider spectrum of the beam delivery system in one session (e.g. more ranges, more doses, etc)
- Precise quantification of the treatment couch using
 Winston-Lutz style tests performed at cardinal gantry angles
- Image quality assessment of the imaging system

Annual QA

- As opposed to constancy measurements, the annual QA re-measures / re-validates baseline/commissioning data using commissioning caliber equipment
- Detectors:
 - Water tank + Bragg peak chamber
 - Water tank + Farmer chamber
 - Lynx or Logos scintillator detectors
 - OctaviusXDR ion chamber array
- Absolute Calibration: IAEA TRS 398

Patient Specific QA

- Every field for every patient undergoes quality assurance procedure prior to treatment
- Procedure highlights:
 - For each field, three transverse profiles, each at different depth, measured with 2D ion chamber array; compared to calculation in Eclipse
 - For each field, at least one point dose measurement is made using cross-calibrated ion chamber (i.e. IBA Dosimetry CC04)
 - Measurement setup:
 - Gantry 0 degrees: all field recalculated to 0 degrees; all fields measured at 0 degrees
 - Planned Gantry Angle: all fields measured at planned gantry angles and compared to calculation
- Passing criteria is being developed
 - Starting point: 3% / 3mm with 90% passing
 - Evalute and determine during commissioning and validation

Novel Monthly Machine QA Technique

Courtesy PTW

- Use OctaviusXDR or StarCheckMaxi + BQ Check phantom
- Using single detector, measure: spot position, dose constancy, proton range/energy, field uniformity (symmetry/flatness)
- Additional setup (e.g. imaging bb + Lynx mounted to gantry) required for Winston Lutz tests

Testing/development with Varian, Rinecker Proton Therapy Center and Scripps Proton Therapy Center

Novel QA Implementation

Logos Systems Inc XRV device:

Conical scintillator-based detector

 Alignment: laser, imaging device, and beam isocenter.

Isofocus Beam Summary				
Beam Center		X	Υ	Z
Average:		0.22	0.09	75.71
Max:		0.49	0.41	76.33
Min:		-0.03	-0.23	74.84
StDev:		0.18	0.23	0.43
			FD=	69.44
			FE=	79.45
Laser @ 0	.64 of DE:		Laser @	75.8464
		X (mm)	Y (mm)	Z (mm)
Laser Erro	r	0.22	0.09	-0.14

Novel Patient QA Technique

- Aluminum mount interfaces to Varian nozzle
- OctaviusXDR array rigidly held in place
- 4 x Slide Nuts securely hold up to 25.0cm of solid water in front of the ion chamber array
- Allows transverse plane at any water equivalent depth (up to 25.0cm)
- Because Varian nozzle holder translates, also allows measurements upstream and down stream of isocenter

Thanks to Glen Mounce, machinist

Acknowledgements

- SPTC Colleagues, especially the physics group:
 - Lei Dong
 - Franko Piskulich
 - Richard LePage
 - Annelise Giebler
 - Yongbin Zhang
 - Luis Perles
- Our partners at Advanced Particle Therapy (APT)
- Our partners at Varian Medical Systems, Particle Therapy Group

Thank you!