
Translating Protocols Between Scanner Manufacturer and Model

Robert J. Pizzutiello, MS, FAAPM, FACMP Sr. Vice-President, Global Physics Solutions President, Upstate Medical Physics

Objectives

- Understand the complexities and pitfalls of translating protocols between manufacturers and models
- Use the CT Protocol Tools on the AAPM Web to translate protocols
- Apply the tools to real life examples

Outline

• Basic CT Parameters common to all manufacturers

- Proprietary names, manufacturer specific
- The AAPM Lexicon website
- Expected results
 - CTDI_{vol} within range
 - Time related factors (motion, mA, effective mAs, pitch, etc.)
 - Thickness/resolution and noise requirements in the reconstructed images
 - Retro recon capabilities/limitations?
- Start with most common exams, with ACR MAP data
 - Adult head, abdomen, ped abdomen
- Chest protocol examples (Mayo)
- Example using AAPM Web site for Routine Head scan (WIP)
- Balance specific features of different manufacturers

Single manufacturer, multiple scanners

- Seems easy right?.....
- Different scanner characteristics
 - Max mA
 - Tube rotation time
 - Detector configuration
- Two approaches
 - Standardization: All scanners same protocols
 - Easier for Radiologists to compare
 - Optimize using max capabilities of each scanner
 - Select patients/exams for optimum clinical benefit

Multiple manufacturers, multiple scanners

- This gets complex in a hurry
- Different scanner characteristics
 - Max mA
 - Tube rotation time
 - Detector configuration
- Two approaches (Standardization Optimization)
- Make optimal use of features
 - Smartphone, texting, etc.
- Nomenclature, nom, nombre, Namen haben

When is a rose not a rose?

- Names are different
- Challenge for staff
- Big challenge for medical physicists
- Concern discussed at 2010 CT Dose Summit, and in many venues by leaders within AAPM
- AAPM jumped into action!

Working Group on Standardization of CT Nomenclature and Protocols (WG)

- 1. To **develop consensus protocols** for frequently performed CT examinations, summarizing the basic requirements of the exam and giving several model-specific examples of scan and reconstruction parameters. General comments on contrast administration may be included, as appropriate.
- 2. To develop by consensus a set of **standardized terms for use on CT** scanners, including all parameters that control the scan acquisition or reconstruction that are programmed by the user, displayed on the final image or included in a DICOM-specified tag, or described a fundamental CT principle (such as a beam-shaping filter).

With AAPM leadership, we will seek support of the ACR and ASRT. Also work with MITA so that the standardized terms are eventually adopted by the IEC

WG Members

- MITA • AAPM
- ACR GE
- ASRT
- FDA
- Hitachi
- Philips
 - Siemens
 - Toshiba

V	[e]	m	b	eı	rs
			<u> </u>	_	-

AAPM:

ACR:

ASRT:

FDA:

GE:

MITA:

Hitachi:

Philips:

Siemens: Toshiba:

DICOM:

Cynthia McCollough (Chair) Dianna Cody (Co-chair) **Dustin Gress** James Kofler Michael McNitt-Gray **Robert Pizzutiello** Mark Armstrong Theresa Branham **Priscilla Butler** Virginia Lester David Clunie Kevin O'Donnell **Thalia Mills** Gail Rodriguez John Jaeckle Mark Silverman Mark Olszewski Christianne Leidecker **Richard Mather**

Biweekly conference calls since RSNA 2010 ightarrow

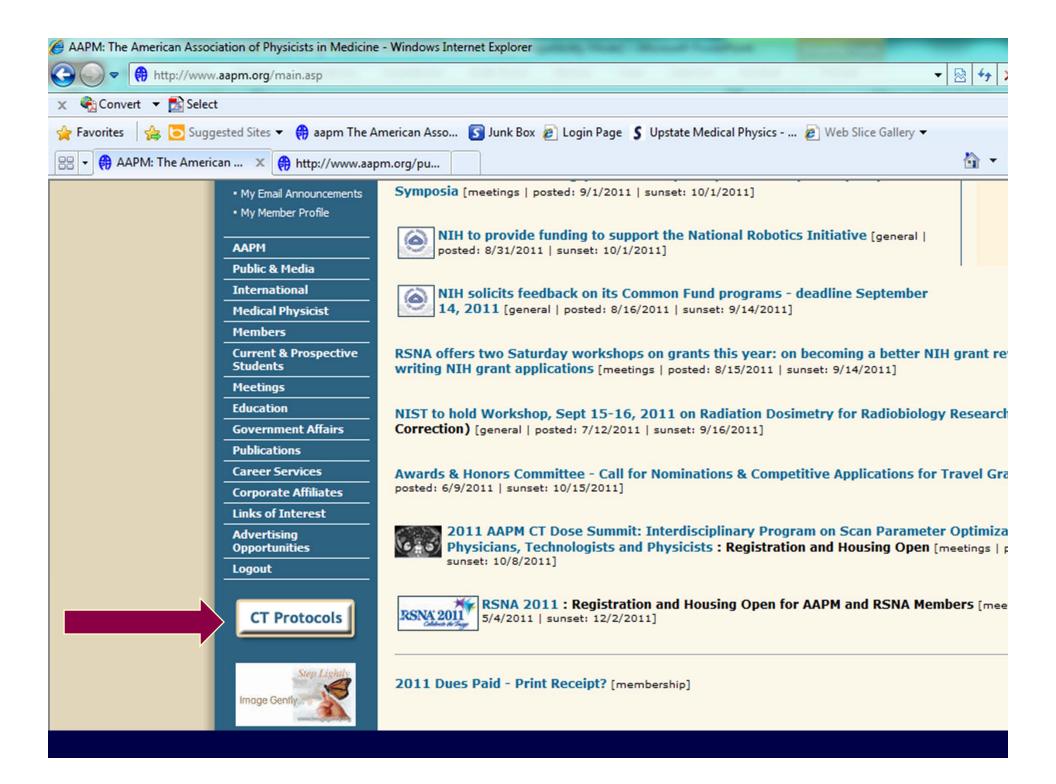
First deliverable: The Lexicon

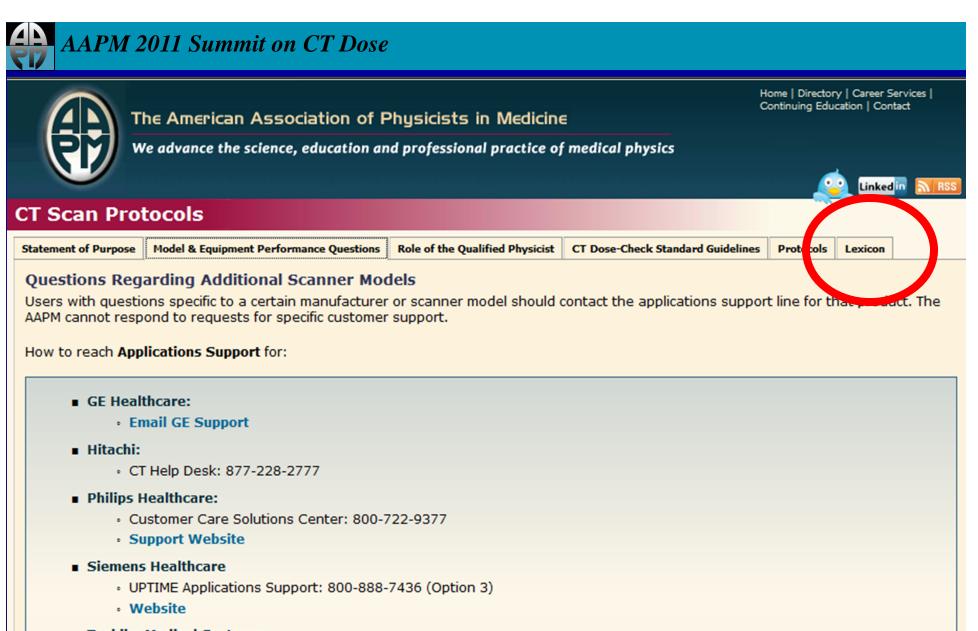
CT scan parameters: Translation of terms for different manufacturers

Introduction

 For the CT technologist who operates multiple scanner models, perhaps from multiple manufacturers, the variability in names for important scan acquisition and reconstruction parameters can lead to confusion, reduced comfort and an increased potential for error. The intent of this CT terminology lexicon is to allow users to translate important CT acquisition and reconstruction terms between different manufacturers' systems.

- This website will be updated as the terminology standardization work progresses.
- The generic descriptions or terms in the first column are intended to orient the user to the relevant concepts; they are not consensus "preferred terms." The generic descriptions are not based on any single existing or pending terminology standard; however the references cited below were consulted in developing the generic descriptions. Future efforts of this Working Group include making recommendations for standardized terminology.


• A number of individuals and groups have advocated for terminology standardization in CT, including at a March **30-31, 2010 FDA public meeting** entitled "Device Improvements to Reduce Unnecessary Radiation Exposure from Medical Imaging" (transcripts available at: http://www.fda.gov/downloads/MedicalDevices/NewsEven ts/WorkshopsConferences/UCM210149.pdf; see p. 153-155). Participants proposed a cooperative effort among professional organizations (AAPM, ASRT, ACR, etc.), industry, FDA, and standards organizations to accomplish this task, as is now being undertaken by this Working Group.


First deliverable: The Lexicon

This represents a first step in the terminology standardization effort undertaken by this working group. Phase 2 of our work will:

- 1. Identify relevant terms from established standard lexicons (e.g. RadLex and DICOM) and other relevant literature and publish an expanded lexicon including these terms.
- 2. Form consensus recommendations on preferred terms.

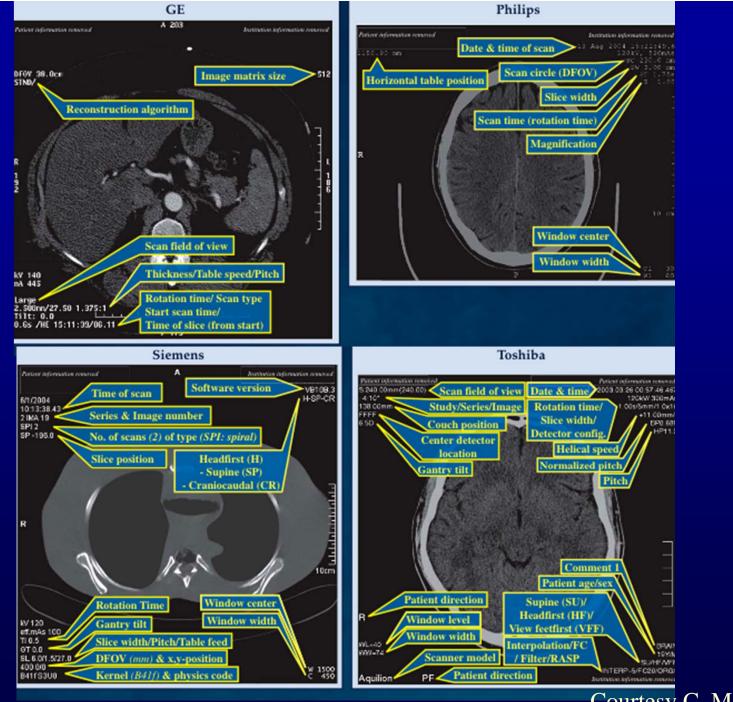
- **1.** Scan acquisition and user interface basics
- **2.** Dose modulation and reduction tools
- **3.** Multi-Slice Detector Geometry
- 4. Image Reconstruction and Display
- **5.** Contrast Media Tools
- 6. Multi-planar formats and 3-D Processing
- 7. Service and Application Tools
- 8. Workflow

- Toshiba Medical Systems:
 - Learning Center

1. Scan acquisition and user interface basics

Generic description	GE	PHILIPS	SIEMENS	TOSHIBA	НІТАСНІ	NEUSOFT
The portion of the user interface where scans are prescribed	Exam Rx	Scan Procedure	Examination	eXam Plan	Scan Protocol	Scan Procedure (Neuviz 16); Main Scan Interface (Neuviz DUAL)
Other portions of the user interface, such as were reconstructed images are viewed	Desktop	Active viewer	Various "task cards", such as "Viewing"	Active display	Image Viewer	Image Display Area (Neuviz 16); Viewer (Neuviz DUAL)
CT localizer radiograph (i.e. the scanned projection radiograph, often acquired by the CT system to allow the user to prescribe the start and end locations of the scan range)	Scout	Surview	Topogram	Scanogram	Scanogram	Surview
Axial scan mode: Data acquisition while the patient table remains stationary; the table position may be incremented between x-ray exposures to collect data over a longer z axis range.	Axial	Axial	Sequence	Scan & View, Scan & Scan, Volume, Wide Volume (Aquilion One)	Normal	Axial
Helical or Spiral scan mode: Data acquisition while the patient table is continuously moving along the z axis.	Helical	Helical	Spiral	Helical	Volume	Helical
Dynamic scan mode - single detector width: Data acquisition at multiple time points over the same anatomic location(s) while the patient table remains stationary; x-ray exposure can be continuous or intermittent	Cine or zero interval Axial	CCT (Continuous CT)	Dynamic (continuous) or Serio (intermittent); scan mode name: DynMulti or DynSerio.	Dynamic (Continuous or Intermittent)	Dynamic	CCT (Neuviz 16); N/A (Neuviz DUAL)
Dynamic scan mode - multiple detector widths: Data acquisition at multiple time points over the same anatomic location(s) while the patient table cycles back and forth between designated start and end locations in order image a region wider than the detector	Shuttle	Jog	Adaptive 4D Spiral; scan mode name: DynMulti4D or DynSerio4D (ECG triggered)	N/A	N/A	N/A
Interventional CT Intermittent v rav	SmortStop	Single CCT	Model dependent:	CT Eluoro (CTE)	quidoShot	Single CCT (Nouvig 16):

1. Scan acquisition and user interface basics

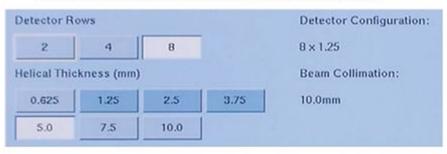

GE	PHILIPS	SIEMENS	TOSHIBA
Exam Rx	Scan Procedure	Examination	eXam Plan
Desktop	Active viewer	Various "task cards", such as "Viewing"	Active display
Scout	Surview	Topogram	Scanogram
Axial	Axial	Sequence	Scan & View, Scan & Scan, Volume, Wide Volume (Aquilion One)
Helical	Helical	Spiral	Helical
Cine or zero interval Axial	CCT (Continuous CT)	Dynamic (continuous) or Serio (intermittent); scan mode name: DynMulti or DynSerio.	Dynamic (Continuous or Intermittent)
Shuttle	Jog	Adaptive 4D Spiral; scan mode name: DynMulti4D or DynSerio4D (ECG triggered)	N/A
	Desktop Scout Axial Helical Cine or zero interval Axial	DesktopActive viewerScoutSurviewAxialAxialAxialAxialHelicalHelicalCine or zero interval AxialCCT (Continuous CT)ShuttleJog	DesktopActive viewerVarious "task cards", such as "Viewing"ScoutSurviewTopogramAxialAxialSequenceHelicalHelicalSpiralCine or zero interval AxialCCT (Continuous CT)Dynamic (continuous) or Serio (intermittent); scan mode name: DynMulti or DynSerio.ShuttleJogAdaptive 4D Spiral; scan mode name: DynMulti4D or DynSerio4D (ECG triggered)

Generic description	GE	PHILIPS	SIEMENS	TOSHIBA
Table feed per 360 degree rotation of the x-ray tube (helical scan mode)	Speed (mm/rot)	Table speed (mm/rot)	Table Feed (mm/rot)*	Couch speed (mm/Rot)
Acquisition field of view: Diameter of the circular region within the scan plane over which projection data are collected. Nominally equal to the diameter of the primary beam at isocenter in the axial plane.	Scan Field of View (SFOV, cm)	Not determined by tech; built into protocol	Not determined by tech; built into protocol	CFOV (Calibrated Field of View)
Tube current: Number of electrons accelerated across an x-ray tube per unit time, expressed in units of milliampere (mA)	mA	mA*	mA*	mA
Tube current-time product: The product of tube current and exposure time per rotation, expressed in units of milliampere • seconds (mAs). In axial scan mode, this is equal to tube current × (scan angle ÷ 360) × rotation time. In helical scan mode, this is equal to tube current × rotation time.	Not used out this system	mAs	mAs	mAs
Effective tube current-time product: In helical scan mode, this is the product of tube current and rotation time (expressed in units of milliam ere • seconds (mAs) + pitch)	Not used on this system	mAs per slice (= mAs/pitch)	Effective mAs (= mAs/pitch)	Effective mAs (= mAs/pitch)
Tube potential: The electric potent a applied across an x-ray tube to accelerate electrop towards a target material, expr. ssed in units of kilovolts (kV)	k∨	kVp	k∨	k∨
Pitch: Unitless parameter user to describe the table travel during helical Cit, equal to table travel (mm) per gantry rotation = total nominal beam width (mm)	Pitch	Pitch	Pitch	CT Pitch Factor
Automated privent instructions	AutoVoice	Auto voice	API (Automated Patient Instructions)	Breath Control
Not able to be directly modified on the us	er interface. V	alue is calculated	d/determined by othe	er settings.

Generic description	GE	PHILIPS	SIEMENS	TOSHIBA
Automatic exposure control (AEC): A scanner feature that automatically adapts the x-ray tube current to the overall patient size to achieve a specified level of image quality	Available in AutomA and SmartmA	Available in DoseRight Automatic Current Selection (ACS)	Available in CARE Dose4D	Available in SURE Exposure
Angular tube current modulation	SmartScan (CT/i only)	D-DOM (Dose Modulation)	CARE Dose	not available as a separate item
Longitudinal tube current modulation	AutomA	Z-DOM	not available as a separate item	SURE Exposure
Angular and longitudinal tube current modulation	SmartmA (x, y, z)	Work in progress	CARE Dose4D	SURE Exposure 3D (X, Y and Z Modulation)
ECG-based tube current modulation	ECG Modulated mA	DoseRight Cardiac	All features available in HeartView package (except (3), only available for SOMATOM Definition Flash) (1) Retrospective gated spiral mode: use "Pulsing" settings in Trigger card	ECG Modulation
			 (2) Prospective triggered sequence: use "Adaptive Cardio Seq." and "Pulsing" settings in Trigger card. (3) Prospectively triggered spiral ("Flash" mode) 	
Image quality reference parameter for AEC	Noise Index	Reference image	Quality reference mAs	Standard Deviation or standard, low- dose, or high- quality

3. Multi-Slice Detector Geometry

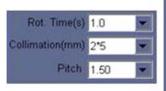
Generic description	GE	PHILIPS	SIEMENS	TOSHIBA	НІТАСНІ	NEUSOFT
Multi-slice detector array design	Fixed	Model dependent: Fixed or Asymmetric	Model dependent: Adaptive or Fixed	Fixed (32 row and above); Adaptive (16 row and below)	Asymmetric-16 slice; Fixed-64 slice	Asymmetric (Neuviz 16); Fixed (Neuviz DUAL)
Detector configuration	Detector Configuration	Collimation N x T (mm)	Detector Configuration or Aqu (Acquisition) on Exam Card	Detector Configuration	Detector Configuration	Collimation N x T (mm)



Courtesy C. McCollough

Siemens Slice Thickness (T) selection (N determined by the scan protocol)

				1			Sli	ce 🔽	5.	0 mm	Acq.	128 x 0.6	mm (
0.6 0.75	1.0	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	10.0	Acq.	128 x 0.6	6 mm
					4.0	5.0	6.0	7.0	8.0	10.0		32×1.2	
				9		No. of	imag	les 🛨		41			


GE Detector Rows (N) and Slice Thickness (T) selection

Philips Detector Rows (N) and Slice Thickness (T) selection

Resolution:	standard	-			
Collineations	640.605		Thickness:	5	🚽 mm
Collimation:	64x0.625	_	Increment:	0.0	mm
Pitch:	1.078	~		1	

Neusoft (Neuviz DUAL) Detector Rows (N) and Slice Thickness (T) selection

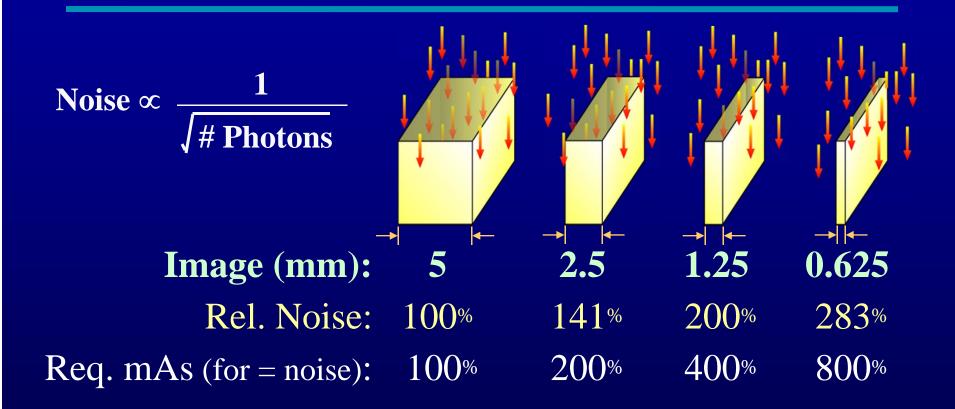
Recon Filter Body S	td.(B)
Center X(mm) 0.0	Increment(mm) 3.0
Center Y(mm) 0.0	Recon Matrix 512 💌
FOV (mm) 400	# of images 136
Thickness(mm) 6.00	(6.00-20.00)

Hitachi Detector Rows (N) and Slice Thickness (T) selection

Toshiba Detector Rows (N) and Slice Thickness (T) selection

Scan Time (Total sec.)	Thickness (mm)	Range	Prescan Voice	Postscan Voice	CE	
0.75(0.75)	2.0(8.0)	8.0	00	00		
0.5 (4.8)	1.0(32.0)	200.0 Thickne	00	00	•	
		0.5 x 64 = 0.5 x 32 = 1.0 x 32 = 1.0 x 24 =	32.0 16.0 32.0			
		200 32 2010		2.0 x 1	6 = 3	2.0

Neusoft (Neuviz 16) Detector Rows (N) and Slice Thickness (T) selection


Resolution	Standard		-	2.00	-	
Collimation	16*1.5	-	Thickness	3.00		mm
Till	0.0		Increment	3.000	-	mm

Noise, Image Thickness and Pitch

- Fundamental relationship
 - Noise increases as fewer photons form the image
- In spiral CT, image noise is dependent on pitch
 - mAs must be changed as pitch is changed
 - Relationship is linear on some systems, but not all
- Siemens
 - Effective mAs = mAs/pitch
- Review how manufacturers handle noise

Image Thickness

- Better z-resolution (less partial vol. averaging)
- Increased image noise
- *Potential* for increased radiation dose

Courtesy J. Koefler

Let's look at some specific protocols

- Chest
- Examples from Mayo Clinic Protocols
- Chosen to make optimal use of each scanners capabilities
- Courtesy C. McCollough

GE	LS Ultra-8	LS 16	LS 64
Scan Type	Helical	Helical	Helical
Rotation Time (s)	0.5	0.5	0.5
Det Configuration	8 x 1.25	16 x 1.25	64 x 0.625
Pitch	1.35	0.938	0.984
Speed (mm/rot)	13.5	18.75	39.36
kVp	Chest	Chest	Chest
mA	<u>CHART</u>	<u>CHART</u>	<u>CHART</u>
Auto-mA	OFF	OFF	OFF
SFOV	Lg Body	Lg Body	Lg Body
Breath-hold	Inspiration	Inspiration	Inspiration
Prep Delay (s)	20	20	20
Min. Retro (mm)	1.25	1.25	1.25
CTDI (mGy)	11	12.96	14

Courtesy C. McCollough

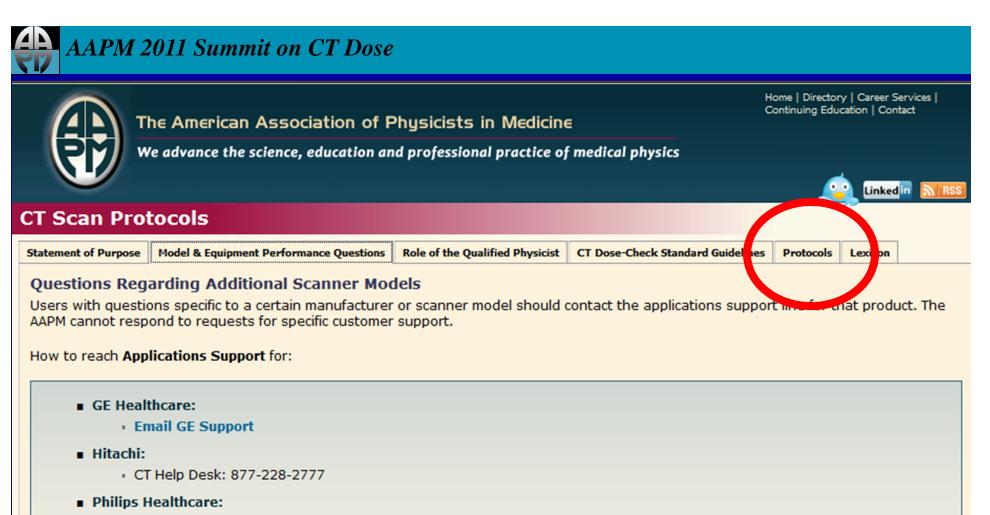
GE	LS Ultra-8	LS 16	LS 64
Scan Type	Helical	Helical	Helical
Rotation Time (s)	0.5	0.5	0.5
Det Configuration	8 x 1.25	16 x 1.25	64 x 0.625
Pitch	1.35	0.938	0.984
Speed (mm/rot)	13.5	18.75	39.36
kVp	Chest	Chest	Chest
mA	<u>CHART</u>	<u>CHART</u>	<u>CHART</u>
Auto-mA	OFF	OFF	OFF
SFOV	Lg Body	Lg Body	Lg Body
Breath-hold	Inspiration	Inspiration	Inspiration
Prep Delay (s)	20	20	20
Min. Retro (mm)	1.25	1.25	1.25
CTDI (mGy)	11	12.96	14

Courtesy C. McCullough

GE	LS Ultra-8	LS 16	LS 64
Scan Type	Helical	Helical	Helical
Rotation Time (s)	0.5	0.5	0.5
Det Configuration	8 x 1.25	16 x 1.25	64 x 0.625
Pitch	1.35	0.938	0.984
Speed (mm/rot)	13.5	18.75	39.36
kVp	Chest	Chest	Chest
mA	<u>CHART</u>	<u>CHART</u>	<u>CHART</u>
Auto-mA	OFF	OFF	OFF
SFOV	Lg Body	Lg Body	Lg Body
Breath-hold	Inspiration	Inspiration	Inspiration
Prep Delay (s)	20	20	20
Min. Retro (mm)	1.25	1.25	1.25
CTDI (mGy)	11	12.96	14

Courtesy C. McCollough

GE	LS Ultra-8	LS 16	LS 64
Scan Type	Helical	Helical	Helical
Rotation Time (s)	0.5	0.5	0.5
Det Configuration	8 x 1.25	16 x 1.25	64 x 0.625
Pitch	1.35	0.938	0.984
Speed (mm/rot)	13.5	18.75	39.36
kVp	Chest	Chest	Chest
mA	<u>CHART</u>	<u>CHART</u>	<u>CHART</u>
Auto-mA	OFF	OFF	OFF
SFOV	Lg Body	Lg Body	Lg Body
Breath-hold	Inspiration	Inspiration	Inspiration
Prep Delay (s)	20	20	20
Min. Retro (mm)	1.25	1.25	1.25
CTDI (mGy)	11	12.96	14


Courtesy C. McCollough

	RECON 1	RECON 2	RECON 3 (optional)*	Reformat 1
Series Description	Chest Routine	HiRes Chest	Thin Nodule	MIP Chest
Created From				RECON 2
Туре	Axial	Axial	Axial	Axial-MIP
Start	Above Apices	Above Apices	Above Nodule	Above Apices
End	Thru Lung Base	Thru Lung Base	Below Nodule	Thru Lung Base
Angle	None	None	None	None
Image Order	Sup to Inferior	Sup to Inferior	Sup to Inferior	Sup to Inferior
Algorithm	STD/FULL	BONE	STD/FULL	BONE
Thickness (mm)	5	1.25	2.5	20
Interval (mm)	5	1.25	1.25	10
DFOV (cm)	Patient	Patient	15	Patient

SIEMENS	Sens-16	Sens-40	Sens-64	Def-64	Def-AS+	F-128
Scan Type	Spiral	Spiral	Spiral	Spiral	Spiral	Spiral
Rotation Time (s)	0.5	0.5	0.33	0.33	0.33	0.28
Collimation	16 x 0.75	40 x 0.6	64 x 0.6	64 x 0.6	128 x 0.6	128 x 0.6
Pitch	1.1	1.15	0.9	0.9	0.9	0.9
Feed (mm/rot)	13.2	13.2	17.8	17.8	34.6	34.6
kVp	120	120	120	120	120	120
Quality ref. mAs	180	140	180	180	180	180
CARE Dose4D	ON	ON	ON	ON	ON	ON
API	Inspiration	Inspiration	Inspiration	Inspiration	Inspiration	Inspiration
Prep Delay (s)	20	20	20	20	24	24
Min. Retro (mm)	0.75	0.6	0.6	0.6	0.6	0.6
CTDI (mGy)	14.04	15.02	14	12.98	12.13	12.16
Base Protocol	ThoraxRoutine	ThoraxRoutine	ThoraxRoutine	ThoraxRoutine	ThoraxRoutine	ThoraxRoutine

Routine Chest

	RECON 1	RECON 2	RECON 3	RECON 4 (optional)*
Series description	Chest Routine	HiRes Chest	MIP Chest	Thin Nodule
Туре	Axial	Axial	SPO-MIP Thins	Axial
Start	Top of Lungs	Top of Lungs	Top of Lungs	Above Nodule
End	Bottom of Lungs	Bottom of Lungs	Bottom of Lungs	Below Nodule
Angle	None	None	None	None
Image Order	Craniocaudal	Craniocaudal	Craniocaudal	Craniocaudal
Kernel	B40	B46	B50	B40
Slice (mm)	5	1.5	20	2
Increment (mm)	5	1.5	10	1
FOV (mm)	Patient	Patient	Patient	150

- Customer Care Solutions Center: 800-722-9377
- Support Website
- Siemens Healthcare
 - UPTIME Applications Support: 800-888-7436 (Option 3)
 - Website
- Toshiba Medical Systems:
 - Learning Center

Practical Example – Routine Adult Head Work in Progress

- Start by defining expected results
- **D CTDI**_{vol} within range
 - t Time related factors
 - (motion, mA, effective mAs, pitch, etc.)
- N Thickness/resolution and noise requirements in the reconstructed images
 - How is Noise reference applied, by mfr? First recon?
 - Retro recon capabilities/limitations?
- Check "CT Protocols" on AAPM web site
- In Routine Head example, look at these parameters

ROUTINE HEAD (BRAIN) - Indications

A. Acute head trauma.

Partial List

- B. Suspected acute intracranial hemorrhage.
- C. Immediate postoperative evaluation following brain surgery
- D. Suspected shunt malfunctions, or shunt revisions.
- E. Mental status change.
- F. Increased intracranial pressure.
- G. Headache.
- H. Etc.

Diagnostic Task

Use these to guide discussions of image quality requirements (thickness, noise, etc.)

- Detect collections of blood
- Identify brain masses
- Detect brain edema or ischemia
- Identify shift in the normal locations of the brain structures including cephalad or caudal directions
- Evaluate the location of shunt hardware and the size of the ventricles
- Evaluate the size of the sulci and relative changes in symmetry

Radiation Dose Management

- Tube Current Modulation (or Automatic Exposure Control) may be used, but is often turned off.
 According to ACR CT Accreditation Program guidelines:
- D •the reference level CTDIvol is 75 mGy
 •the pass/fail limit is 80 mGy.

These values are for a routine head and may be significantly different (higher or lower) for a given patient with unique indications, etc.
NOTE: All CTDIvol are for 16 cm diameter phantom

General Scan Instruction Suggestions

- Table height at External Auditory Meatus (EAM).
- PATIENT POSITIONING: Patient supine, head first,
 head in head-holder.
- D *To reduce or avoid ocular lens exposure*, the scan angle should be parallel to a line created by the supraorbital ridge and the inner table of the posterior margin of the foramen magnum.

This may be accomplished by either by head tuck or gantry tilt in most situations.

EXAMPLE PROTOCOLS of both AXIAL/SEQUENTIAL and HELICAL scans are provided.

- There are advantages and disadvantages to using either axial or helical scans for routine heads.
- The "best choice" varies by patient, by indication and by scanner.
- Users of this document should consider the following and consult with both the manufacturer and a medical physicist to assist in determining which mode to use and when.

EXAMPLE PROTOCOLS of both AXIAL/SEQUENTIAL and HELICAL scans are provided.

- AXIAL SCANS generally have less artifact, but the scan takes slightly longer
- HELICAN SCANS may have more image artifact, especially for scanners with < 16 detector rows, but can give close to or equivalent performance for scanners with ≥ 64 detector rows.

HEAD – ROUTINE (SEQUENTIAL): SELECTED SIEMENS SCANNERS

- Topogram: Lateral, 256 mm.
- Patient positioning: Patient lying in supine position, arms resting along the body, secure head well in the head holder, support lower legs.
- D Gantry tilt is available for sequence scanning, not for spiral scanning.
 Gantry tilt is not available for dual source scanners.

HEAD – ROUTINE (SEQUENTIAL): SELECTED SIEMENS SCANNERS

- For all head studies, it is very important for image quality to position the patient in the center of the scan field. Use the lateral laser beam to make sure that the patient is positioned in the center.
- In order to optimize image quality versus radiation dose, scans are provided within a maximum scan field of 300 mm with respect to the iso-center. No recon job with a field of view exceeding those limits will be possible. Therefore, patient positioning has to be performed accurately to ensure a centered location of the skull.

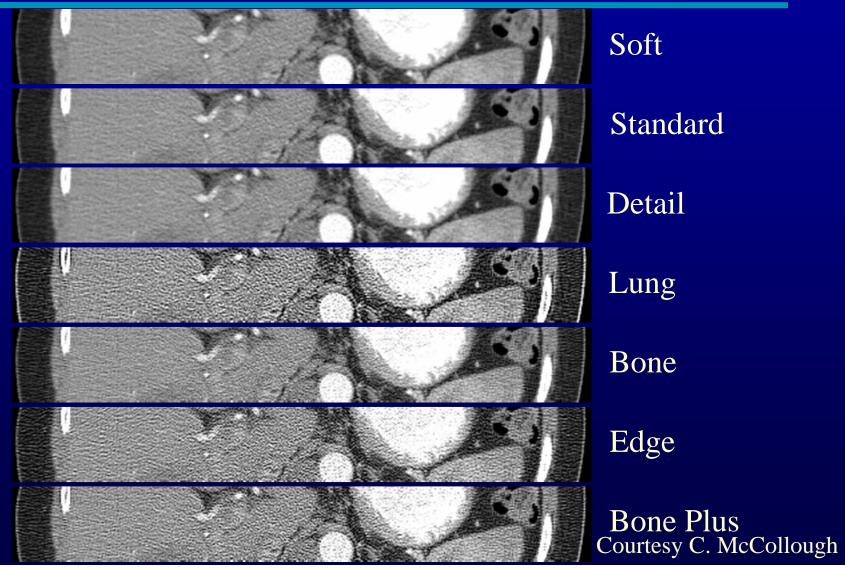
HEAD – ROUTINE (SEQUENTIAL): SELECTED SIEMENS SCANNERS

Parameter	Sensation 16	Sensation 64	Definition (dual source, 64 slices)	Definition AS (128 slices)	Definition Flash (dual source, 128 slices)
Software version	VB30	VB30	VA34	VA27	VA34
Scan mode	seq	seq	seq	seq	seq
Tube voltage / kV	120	120	120	120	120
Effective mAs / Qual ref mAs*	270/310 Base/Cerebrum	380	380	420	340
Rotation time / s	1.0	1.0	1.0	1.0	1.0
Collimation / mm	12×0.75/12×1.5	24×1.2	30×0.6	60×0.6	32×1.2
	Base/Cerebrum				
Pitch	n.a.	n.a.	n.a.	n.a.	n.a.
Dose modulation	n.a.	n.a.	n.a.	n.a.	n.a.
Scan area Scan length / mm	head 40.5/81.0 Base/Cerebrum	head 138	head 120	head 138	head 133.06
Scan time / s	1.0/1.0 Base/Cerebrum	1.0	2.0	2.0	2.0
CTDIvol	60.5/59.5	53.0	59.6	59.7	58.9
(16 cm phantom)	Base/Cerebrum				
Reconstruction I					
Kernel	H31s	H31s	H31s	H31s	H31s
Slice / mm	4.5/9.0 Base/Cerebrum	4.8	6.0	6.0	5.0
Slice increment / mm	n.a.	n.a.	n.a.	n.a.	n.a.

<u>HEAD – ROUTINE (SPIRAL):</u> <u>SELECTED SIEMENS SCANNERS</u>

- Gantry tilt is available for sequence scanning, not for spiral scanning.
 Gantry tilt is not available for dual source scanners.
- For all head studies, it is very important for image quality to position the patient in the center of the scan field. Use the lateral laser beam to make sure that the patient is positioned in the center.

<u>HEAD – ROUTINE (SPIRAL):</u> <u>SELECTED SIEMENS SCANNERS</u>


- In order to optimize image quality versus radiation dose, scans are provided within a maximum scan field of 300 mm with respect to the iso-center.
- No recon job with a field of view exceeding those limits will be possible.
- Therefore, patient positioning has to be performed accurately to ensure a centered location of the skull.

TOPOGRAM: Lateral , 256, 120 kV, 50 mA, direction is craniocaudal.

<u>HEAD – ROUTINE (SPIRAL):</u> <u>SELECTED SIEMENS SCANNERS</u>

Parameter	Sensation 64	Definition (dual source, 64 slices)	Definition AS (128 slices)	Definition Flash (dual source, 128 slices)
Software version	VB30	VA34	VA27	VA34
Scan mode	spi	spi	spi	spi
Tube voltage / kV	120	120	120	120
Effective mAs / Qual ref	380	390	410	390
mAs* Rotation time / s	1.0	1.0	1.0	1.0
Collimation / mm	64×0.6	64×0.6	128×0.6	128×0.6
Pitch	0.85	0.55	0.55	0.55
Dose modulation	CARE Dose	CARE Dose	CARE Dose	CARE Dose
CTDIvol	59.7	59.3	58.9	59.6
Reconstruction				
Recon Start	Top of Frontal Sinus	Top of Frontal Sinus	Top of Frontal Sinus	Top of Frontal Sinus
Recon End	Vertex	Vertex	Vertex	Vertex
Kernel	H31s	H31s	H31s	H31s
Slice / mm	5.0	5.0	5.0	5.0
Slice increment / mm	5.0	5.0	5.0	5.0

GE Recon Algorithms

Siemens Recon Kernels

- B10 \rightarrow B90 Body (90 is sharpest)
- H10 \rightarrow H90 Head
- U30 \rightarrow U90 Ultra High Resolution
- T20 \rightarrow T81 Topogram
- Lower number smoother
- Higher number sharper
- Multiples of 10 are the "basic" kernels
- In between values are "special" kernels

Review

- Basic CT Parameters common to all manufacturers
 - The AAPM Lexicon website
- Expected results
 - CTDI_{vol} within range
 - Time related factors (motion, mA, effective mAs, pitch, etc.)
 - Thickness/resolution and noise requirements in the reconstructed images
 - Retro recon capabilities/limitations?
- Start with most common exams, with ACR MAP data
 - Adult head, abdomen, ped abdomen
- Chest protocol examples (Mayo)
- Example using AAPM Web site for Routine Head scan (WIP)
- Balance specific benefits of features for each manufacturer