

Neuro CT – What's a Good Head Exam?

Rajiv Gupta, PhD, MD

Neuroradiology
Massachusetts General Hospital
Harvard Medical School

Outline

- What we need to see?
- Routine Head CT protocols
- Dose optimization strategies
- Some newer tricks using Dual Energy CT

58 year old, new onset of neurologic symptoms

Where is the Abnormality?

CT: Equivocal for an infarct

Acute Infarct in the ACA territory

CT Angiography

CTA SI: RebWed perfusion

Requirements

• Good gray-white differentiation (8-10 HU)

Different Case: Young patient after trauma

Requirements

- Good gray-white differentiation
- Proper cupping correction

11 month old female that presented with gagging after trauma to oropharynx with drum stick.

Diagnosis

- Retropharyngeal abscess
 - Etiology
 - Suppurative bacterial lymphadenitis
 - S. aureus, Strep B, oral flora
 - Foreign body perforation
 - Trauma

Requirements

- Good gray-white differentiation
- Proper cupping correction
- Good soft tissue discrimination

44 year old fell from a tree

2 months later

Surgical Specimen

Take-home Points:

- Wood may appear as air
- Accurate HU calibration is important

Another Case: Pencil vs Globe

Requirements

- Good gray-white differentiation
- Proper cupping correction
- Good soft tissue discrimination
- Accurate, reliable HU calibration

History of Trauma

Subtle right occipital fracture, only visible on thin slices, and sharp kernel

Requirements

- Good gray-white differentiation
- Proper cupping correction
- Good soft tissue discrimination
- Accurate, reliable HU calibration
- High spatial resolution and MTF

4 year old with 2 week history of headaches, abdominal pain, anorexia and vomiting. Recent antibiotics for sinusitis.

Artifact or Pathology?

Technology Assessment Institute: Summit on CT Dose

Imaging 1 Week Later

Pathology: Burkitt Lymphoma

B-cell lymphoma

Beam Hardening

- Effective beam energy increases.
- Beam "hardens" as it penetrates. µ
- Higher $E => lower \mu$.
- "Cupping artifact"

thickness

Requirements

- Good gray-white differentiation
- Proper cupping correction
- Good soft tissue discrimination
- Accurate, reliable HU calibration
- High spatial resolution and MTF
- Artifact-free posterior fossa and skull base

"The Chest X-ray of the Brain"

Must support quick, confident read.

Main Culprits

- Poor SNR
- Poor CNR
- Poor spatial resolution
 - Improper recon kernel
 - Improper protocol

- Artifacts
 - Motion
 - Scatter
 - Beam hardening
 - Windmill

•

Sample MGH 64-slice Head CT Protocol (Minor Variations between Scanners)

			n Deanners,			
Series Auto Transf		OFF				
Mode		Helical	TT 1' 1			
Time		0.7	Helical,			
DMPR		ON	1001 17			
Thickness		1.25	120kV,			
Pitch		0.531:1				
Speed		10.62	Auto-mA,			
Interval		0.625	,			
Rotation Time		0.7	Pitch 0.5,			
Gantry Tilt		0				
SFOV		Head	ST 1.25,			
KV		120	,			
mA		250	interval 0.625			
DFOV		22	11101 001 01020			
ALG		Standard				
Recon 2:			s: Coronal Skull Auto w/DMPR			
5 MM DX STD AXIALS			OV 22			
Thickness	5.0					
Interval	5.0	Interval 2.5				
Algorithm	22	Window Head				
DFOV	Std					
Recon 3:						
2.5 MM DX BONE AXIALS						
Thickness	2.5	DE	CRAD CODE: CTBR-			
Interval	2.5					
Algorithm	Bone					
DEOV	22					

CT Dose Reduction Strategies

- Use another modality!
- Optimize acquisition
 - Tailor to clinical requisition
 - Lower technique
 - Minimize artifacts
 - Dual Energy acquisition

- Optimize reconstruction / post-processing
 - FBP vs newer "iterative reconstruction" kernals
 - Filters, e.g. metal streak reduction
- Optimize readout
 - Coronal Reformats
 - Optimal PACS display
 - Appropriate window/level settings

Optimizing Dose: Basic Principles

- Lowest possible mAs is proportional to:
 - Degree of intrinsic tissue contrast
 - Acceptable level of image noise
 - Noise ~ 1 / SQRT (mAs)
- Tailor the protocol to the clinical question
 - E.g.: 30 mAs for sinus CT, FESS planning
 Mulkens et al, AJR May 2005
 Loubele et al, Radiat Prot Dosimetry 2005
 - − E.g.: 30 mAs for pituitary CT, transphenoidal sx

50% mAs Reduction? Slightly Noisier, but OK for F/U

- Dept wide study ↓ mA by 50% for all CT's
 - Unchanged HU, GW conspicuity
 - 22% decreased CNR (attributable to noise)

Mullins, Lev, et al. "Comparison of image quality between conventional and low dose NCCT." AJNR, Apr 2004.

Optimizing Dose: Adaptive mA modulation

- Varies mA both in radial and axial direction
- Substantial dose reductions have been reported
 - % decrease depends on baseline protocolSmith, Dillon, Wintermark et al. Radiology 2008
- More useful for <u>neck</u> than head, in our experience
 - Wide range of thickness in shoulders
 - Noise index values of 11.4 and 20.2, result in 20% and 34% dose reduction, respectively

Russell, Anzai et al, Seattle. AJNR 2008

Optimizing Dose: Other Considerations

- Lower kV
 - Increased photoelectric effect
 - Higher HU iodine
- Avoid rescanning same region
 - E.g., head and temporal bone, face and sinuses (? billing)
- Maximize quality parameters
 - Decrease motion artifact: speed, sedation
 - Remove extraneous hardware
 - Optimize contrast bolus; right sided
 - Angle gantry though clips, fillings

Brown, Lustrin, Lev, Taveras et al. AJR 1999

Iterative Reconstruction Algorithms

ASIR (GE), IRIS, SAFIRE (Siemens): (MBIR --- Model Based Iterative Recon)

Courtesy of Shervin Kamalian and GE Healthcare

H

E

D

E

Technology Assessment Institute: Summit on CT Dose

Sample	e CT	Dose	Reduction	at 30% ASIR
Some		DOBC		

	San	ipie C	1 Dose	Real	iCi	uon	α	i 3070	ASIN		
		kv	mA	Noise (AD	(MC	ASII	R	Rot speed	Pitch	CTDIvol	DLP
Head I-&I-	+ Сигге	nt 120	200			30%	-	0.7	0.531:1	49.7	932.25
	previo	us 120	250			0%		0.7	0.516:1	66.51	1270.34
CTA (Head	l) Curre	nt 120	235			30%	6	0.5	0.531:1	41.18	733.57
	previo	us 120	350			0%		0.5	0.516:1	59.62	1170.17
			min 350								
CTA (H&N) Curre	nt 120	max 600	13		30%	6	0.5	0.984:1	29.89	1333.86
			min 350								
	previo	us 120	max 600	10		0%		0.5	0.516:1	57.06	2518.04
HD	kv	mAs (ADM)	ADM Noise	ASIR	P	itch	Rot	tate speed	CTDIvol	DLP	Thickness
		Min 100									
C spine	140	Max 715	11.83	30%	0.9	561:1		0.5	21.45	539.08	2.5
		Min 100									
T/L spine	140	Max 715	10	30%	0.9	984:1		0.5	10.11	246.59	0.6
VCT	kv	mAs (ADM)	ADM Noise	ASIR	P	itch	Rot	tate speed	CTDIvol	DLP	Thickness
		Min 100									
C spine	140	Max 715	20	0%	0.9	561:1		0.5	42.04	1056.46	0.6
		Min 100									
T/L spine	140	Max 715	20	0%	n 4	561:1	l	0.5	77.92	1860.57	0.6

Single vs Dual Energy CT

- A single CT Number (HU)
- Prior knowledge for material separation
- Unable to distinguish materials with same HU
 - Blood vs. dilute contrast
 - Blood vs. diffuse mineralization
 - Uric acid vs. Ca oxalate
 - Calcification vs. gouty tophus

Dual Energy Principles

- Total attenuation decreases with increasing energy
- Decrease is characteristic for each material
- Depends on photon energy and material density
- X-ray absorption depends on the inner electron shells
 - DECT is sensitive to atomic number and density
 - DECT is not sensitive to chemical binding

Dual Energy Systems

Siemens: Dual Source CT (Definition)

- Two X-ray sources, two detectors, simultaneous acquisition
- Operate one source at 80kV and the other at 140kV

140kV 80kV

General Electric: Discovery Gemstone (HD-750)

- Single Source, single detector, on a fast gantry
- Rapidly alternate the single tube between 80kV and 140kV

DECT: Pro and Cons

Siemens: Dual Source CT (Definition)

- Simultaneous acquisition
- Optimized tube current
- Projections: 90 deg apart
- One detector smaller than other

General Electric: Discovery Gemstone (HD-750)

- Projections close to each other in time => separation in projection domain
- Tube current constant (i.e., not optimized for each kV).

Clinical Case

- 79 yo man with acute onset of right hemiparesis and aphasia
- Received IV t-PA at OSH
- Transferred to MGH for further management
- At MGH, CTA showed:
 - emboli in the distal left ICA
 - occlusion of left M1

Cath Lab: Recanalization

80 kV

Post-op: 80kV and 140 kV Images

VNC and Iodine Overlay Images

Intra-parenchymal Hemorrhage

Single Energy Iodine Overlay

Virtual Non-contrast Follow-up Image

Virtual Monochromatic Images

• Are they clinically useful?

27 year-old male presents to ER complaining of sudden onset of severe right sided eye pain while using a weed whacker

27 year-old after a weed whacker accident

Metal artifacts, identical W/L setting

80 kV 4955492

Monochromatic 190kV Images

Pre-Op CTA

- Nail entered the bony covering
- Carotid artery spared!

Post-Op CTA

Outcome

- Nail removed with globe intact
- Post-Op Evaluation:
 - Minor conjunctival laceration
 - No optic nerve injury bilaterally
 - 20/20 vision bilaterally!
 - ☐ Take Home points:
 - Dual-energy CT helps
 - Wear Eye protection

MGH Head CT Take Home Points

- Dose well below ACR guidelines
- Configure protocol to the clinical need
- Avoid orbits if possible
 - Especially important in serial scans: ICU, pediatrics
 - But don't sacrifice diagnostic accuracy!
- Pediatrics
 - 125 mA used, < HALF the adult dose
 - Strategy: screen with low dose CT, confirm with MRI
 - $\overline{-}$ Age < 18

- Axial vs helical mode?
 - Axial, arguably, has > SNR for otherwise fixed settings
 - No real speed advantage to helical
 - Helical = more reformat/recon options (e.g., coronals)
- Dual Energy CT
 - Effective tool for material discrimination
 - Quantitative tool
 - Both sensitive and specific for Hemorrhage vs. Iodine
 - Limited by saturation and other artifacts