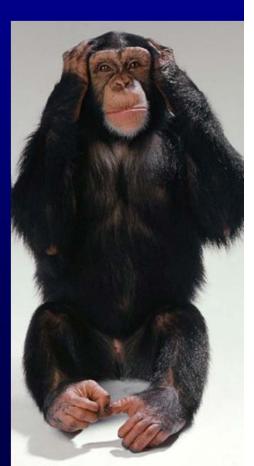
Physicist's Role in CT Protocol Review

Dianna Cody, Ph.D., DABR, FAAPM U.T. M.D. Anderson Cancer Center


Michael McNitt-Gray, Ph.D., DABR, FAAPM David Geffen School of Medicine at UCLA

Jim Kofler, Ph.D., DABR Mayo Clinic

At the beginning...

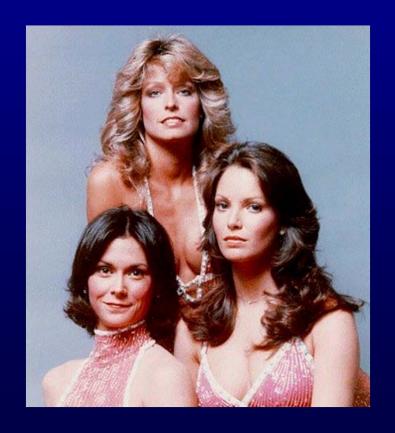
- May need to convince administration that CT protocol review is needed
 - State regulations/recommendations
 - Recent Joint Commission document
 - (ACR CT QC Manual)
 - Fear of media reports... subsequent lawsuits...

MUST FORM A TEAM

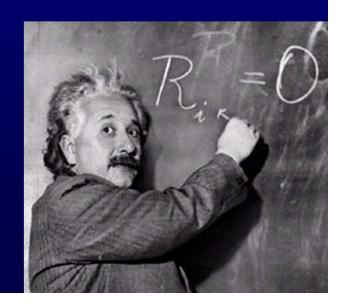
- Technologist representation
- Physicist input
- Radiologist involvement

 Do NOT try to do this alone. Bad things can happen and your credibility may suffer if there is no team behind you

Getting started


- Does the site have a protocol documentation method?
 - Binder? (hard copy)
 - Digital? (file-based)
 - Online? (easy access, quick updates)
- Does it include dose information?
 - CTDIvol
 - Range of CTDIvol?

CT Protocol Review Team


- Technologist
 - Maybe more than one
- Radiologist
 - At some point in the process
- Physicist

Physicist's Role

- Best handle on image quality and dose tradeoff
- Best handle on technical parameters
- Example:
 - Dose intuition (too high, too low, about right)
 - Effective mAs
 - Change kV, how to adjust mA?
 - Change kV, how to adjust trigger
 HU level for contrast injection
 monitoring

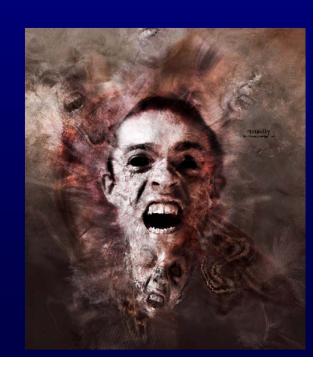
More examples

- Thick beam vs more narrow beam?
 - Thick beam -> fewer scatter tails -> more efficient
 - But extra rotations on each end of helix can cover substantial geography and deliver substantial extra exposure
 - Thin beam -> more scatter tails -> less efficient
 - But extra rotations on each end of helix will cover less geography and deliver less extra exposure
 - Cut-off point for GE ~ 25-30cm scan extent

And more examples

- How to adjust parameters when patient has metal implants?
- Act as technical information conduit by communicating directly with vendor experts
- Provide Continuing Medical Education lectures when requested, especially in conjunction with implementation of new technology

UCLA Experience


- Dept. chair agreed to tackle CT protocol review
 - Initial reviews were accomplished section-by-section
 - Neuro, Chest, Body, MSK, etc.
 - Chief Radiologist for section assigned to team
 - CT Tech in charge of protocol support
 - CT physicist

Initial process

- EVERY protocol reviewed one at a time
- Painful
- Necessary
- Required several meeting sessions with each section chief
- Protocol signed by chief radiologist

MDA Experience

- Current system at MDA not working well
- Changes to protocols near daily
- Too many to track carefully
- Need to perform regular protocol updates at remote site
- Justification for implementing a more rigorous and controlled process
- Physics pushing for overhaul of process...

New MDA protocol review process

- Protocol changes to occur only twice per month
 - First & third Friday of each month
- Form required to change protocol or initiate new protocol
 - Rationale, signatures (tech/radiol/physics)
 - Launch trial run (one or two scanners), review results
 - Record date change made system-wide, date online protocol documentation changed, date remote sites updated
 - Future: make form electronic

New process requires

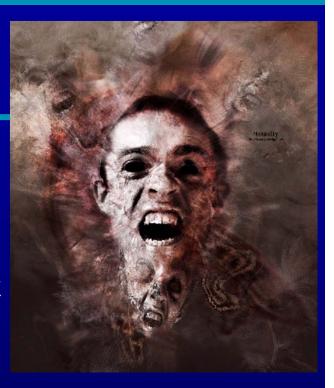
- Meeting early each week of scheduled protocol changes
- Decide which changes to move forward
- Radiologist attendance? Signature may be sufficient
- May need emergency change route for some urgent patient care issues
- (Just getting going now Sept. 2011)

Big picture philosophy – Version 1

- Few basic protocols
 - Not so many to keep track of and review
 - Require LOTS of adaptation by technologists for anything non-routine
 - Likely will result in a lot of variation in technique
 - May slow down throughput as tech makes decisions and changes
 - May work well for certain types of practice

Big picture philosophy – Version 2

- Large number of protocols
 - Lots of protocols to monitor long term
 - Develop separate parameter combinations for different scanner models
 - Opportunity to optimize scanner capabilities for many different exams
 - Improve throughput
 - Improve consistency



Version 2 gone crazy

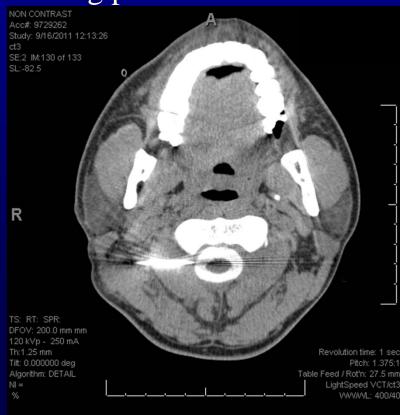
- Chest without IV contrast
- Chest with IV contrast
- Chest with and without IV contrast

- Chest with and without IV contrast
 - Delete passes not ordered on the fly

Version 2 – turbo

- Chest with and without IV Contrast Feet First
- Chest with and without IV Contrast Head First
- Tube current modulation may become disabled if patient orientation is changed
- Prompted loading both head first & feet first versions for protocols employing TCM
- Vendor dependent

UCLA experience



- For some protocols, reduced dose and maintained acceptable image quality
- For some protocols, <u>increased dose</u> to achieve desired image quality. Expect this to happen.
- Goal is not to expect to reduce dose for every protocol, but to balance dose and necessary image quality

Recent real-life MDA example

- New protocol spinal cord ablation
- Need to insert needle in specific place in neck
 - Staff used routine spine protocol as starting point
 - Overall pretty good, but:
 - Reconstruction algorithm not great for soft tissue
 - Large SFOV vs Head SFOV
 - 140 kVp???

New scanner with new features

- Phantom scans may help to understand the effects of new technologies prior to clinical implementation
- Assist with employing new features in clinical scan protocols

What does the physicist do?

- Examine dose parameters
 - CTDIvol
 - -kV
 - mA, rotation time, pitch (eff. mAs)
 - Beam width, detector configuration
 - Tube current modulation parameters
 - Vary by vendor
 - Check primary (first) image thickness value
 - Target: IQ consistency for different scanner vendors & models

What else?

- For aggressive (high-dose) exam, ask radiologist which parts of exam can be done at reduced settings?
 - Introduce idea of 'dose budgeting'
 - Have target value for overall exam
 - Figure out which passes are most critical vs least critical
- Encourage enhancement delay compromise to eliminate one pass completely and avoid overlap

Provide Reference protocols

- AAPM website CT Protocols button
- Other websites (like <u>www.ctisus.com</u>)
- Vendor technical contacts
- Professional colleagues (swap info)

