2001 AAPM Summer School Seattle, Washington

ACR R/F Phantom

Charles R. Wilson, Ph.D., FACR Medical College of Wisconsin Milwaukee, Wisconsin

ACR R/F Phantom

- This lecture has been approved for 1 hour of continuing medical physics education credits by CAMPEC.
- This lecture also has pending FDA approval for the treatment of a common condition affecting many individuals in the US.
- This condition will be named for those still awake at the end of this talk.

INSOMNIA !

R/F Physics Subcommittee

Name Robert Dixon -Beth Schueler -Charles Wilson - Obiwon Kenobi Pam Wilcox Penny Butler Krista Bush _

- Call Name **Captain Midnight** Wonder Woman **Xena Warrior Princess**

- Goldilocks

Buffy the Vampire Slayer

Prototype Chest Accreditation Phantom

Resting in Peace

R/F Phantom Design Criteria

 Radiographically tissue equivalent PMMA and aluminum - weight: 12 to 30 pounds Build on existing, widely used phantoms CDRH chest and abdomen NEXT phantoms Modular design chest, abdomen and interventional programs Inexpensive and easy to interpret •

CDRH NEXT Abdomen Phantom

ACR Barium Enema Quality Control Manual

CDRH Chest Phantom

ACR R/F Phantom Components

- 1. Test object plate (1 cm PMMA)
- 2. Aluminum plate (3/16")
- 3. PMMA block (7.6 cm)
- 4. PMMA block (7.6 cm)
- 5. PMMA block (4.1 cm)

ACR Chest Phantom

ACR Abdomen Phantom

Abdomen (overtable tube)

ACR R/F Test Objects

A. Contrast Detail Pattern

4 rows – 6 columns

B. Copper mesh

9 patterns

9 patterns

C. Central aluminum disk

9 low contrast objects

D. Aluminum disk

Latitude test

Phantom Image Evaluation Suggested Criteria (1)

High Contrast Mesh

Chest – 8 or better
Abdomen – 7 or better

Spot film – 5 or better
Central Aluminum Disk
Chest – 7 or better
Abdomen – 7 or better
Spot film – 6 or better

Phantom Image Evaluation Suggested Criteria (2)

 Contrast Detail - Columns from left -4/4/3/2 Optical Density - Chest - 1.3 to 1.6 – Abdomen – 1.3 to 1.6 – Spot film – 1.0 to 1.8 Latitude Disk To be established

Suggested performance standard : All objects to the left of the dotted line are to be visible.

Phantom Transmission Test Geometries

Narrow Beam % Transmission CDRH and ACR Chest Phantoms

ACR ~ 2.5 cm more PMMA

Scatter to Primary Ratio CDRH and ACR Chest Phantoms

Wide Beam % Transmission CDRH and ACR Chest Phantoms

ACR: Air gap ~ 9 cm less

Technique Factors (GE DR unit at 120 kVp)

ACR – Chest Phantom

2.5 mAs (0.126 mGy)

CDRH Chest Phantom

2.04 mAs (0.103 mGy)

Technique Factor Comparison (GE DR unit at 120 kVp)

8 6

300

400

sW 4 ACR – Chest Phantom 100 200 - 2.5 mAs (0.126 mGy) Weight • 16 consecutive male patients – Averages: 201 lbs, 3.2 mAs, 0.16 mGy • 18 consecutive female patients – Averages: 173 lbs, 2.5 mAs, 0.126 mGy ACR Chest Phantom equivalent to ~ 170 lb man or woman

CDRH and ACR Abdomen Phantoms

Narrow Beam % Transmission CDRH and ACR Abdomen Phantoms

Entrance Skin Air Kerma Dosimeter

Desirable Characteristics

- Precise
- Energy independent response
- Linear response with air kerma
- Accurate
- Choices
 - Thermoluminescent Dosimeter (TLD)
 - Optical Stimulated Luminescence (OSL)

Luxel Personnel Dosimeter

Preliminary Tests of Luxel Personnel Dosimeter

Energy response

Dosimeter pairs irradiated using different hvl beams 0.32, 0.67, 2.2, 4.2, 5.1 and 6.0 (mm Al)

Exposure response linear from 4 to 900 mR
Precision acceptable: ~ 10% @ 10 mR > 3% @ 100 mR

Optical Stimulated Luminescence OSL

- Illuminate an irradiated crystal (Al₂O₃) with a given wavelength of light to initiate the movement of charge from trap sites to luminescence centers.
- Amount of luminescence is proportion to dose and amount of illumination (optical energy) imparted to the crystal.

Conceptual Energy Diagram Following Irradiation

Conceptual Energy Diagram Delayed and Pulsed OSL Stimulation

Conduction Band

Retrapping in Metastable Shallow Trap

,ight

Stimulation

Partial Depopulation of Dosimetric and Deep Traps

Luminescence Center

Valence Band

Luxel Dosimeter with Filter

LANDAUER 25-Jan-01 119

Dosimeter on Test Tool

Luxel Dosimeter Response Chest Phantom @120 kVp

Luxel Accuracy vs Given Air Kerma Chest Phantom @ 120 kVp

Given Air Kerma vs Luxel Reading Chest Phantom

Luxel Dosimeter Response Abdomen Phantom @80 kVp

Dosimeter Precision

- Two sets of 6 dosimeters were irradiated using 100 and 120 kVp beams. Dosimeters on top of phantom.
 - 100 kVp (6): 81.0 +/- 2.6 mrad (3.2 %)
 - 120 kVp (6): 36.4 +/- 1.5 mrad (4.2%)
- Pairs of dosimeters were irradiated at air kermas of ~ 9, 36, 90, 360 and 900 mGy using 80 and 120 kVp beams.

RMS Differences
- 80 kVp (5 pairs): 3.5%
- 120 kVp (5 pairs): 2.0%

Selection of Phantom Manufacturer

 RFP sent to potential manufacturers
 RFP contained detailed specifications

 Materials
 Phantom and test object dimensions and tolerances
 i.e. hole depth for low contrast object: 0.068" +/-0.0005"

 Manufacturers submitted three phantoms for testing

Selection of Phantom Manufacturer

 Phantoms evaluated by an independent medical physicist

- IMP chosen on basis of qualifications
- Availability of appropriate test equipment
- Quality of IMP evaluation of three prototype phantoms constructed by ACR

 Committee's choice of manufacture based on IMP's tests of the manufacturer's pre-production phantoms

Hole Depths in Central Aluminum Disk

Actual)

Average Difference (Specified

Pilot Accreditation Program Initial Phantom Data

 9 facilities participated in pilot accreditation program

Low Contrast Detail Objects

Entrance Air Kerma

Contrast Detail Evolution Chest Phantom

3 physicists somewhat independently scored imagesExcellent agreement for 7 of 9 films

- 6 passed and 1 failed
- 2 disagreements

Initial Experience With Abdomen Phantom

- Incorporated phantom into annual equipment checks
 - Data collection form is an Excel spreadsheet

•

- Automatically performs linear regression of kVp vs mR/mAs
- Computes ESE for abdomen and chest phantoms from kVp and mAs used
- Outliers are easily seen

